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1 IMPLICIT AFFECTIVE TAGGING

1.1 Introduction

Implicit affective tagging is the process of au-
tomatically extracting affective tags for media
content based on analysing a user experiencing
the media. The process is implicit, because
there is no need for the user to record any
labels. For example, a music video could be
tagged as exciting if the user was filmed shak-
ing her head while watching it.

The goal of this project is to develop a sys-
tem to extract implicit affective tags for music
videos based on physiological signals.

1.2 Why implicit affective tagging?

Hiring people to tag media content manually
is both slow and costly. An alternative to man-
ual tagging is machine-based tagging. For ex-
ample, video analysis algorithms can produce
tags based on features of the content. However
these algorithms have proven to be ineffective,
as they do not understand the context of the
media [1].

Why do we expect implicit affective tag-
ging to work? Reeves et al. discuss the media
equation, which proposes that humans react to
media content in the same way they would
react if the same events were happening in real
life [2]. Based on this, Pantic et al. argues that
since affective response is known to contain in-
formation about real events, affective response
to media must also contain information about
the media [3]. Indeed, many empirical studies
indicate that media content (such as videos,

pictures and music) can be effectively discrimi-
nated by affective responses [4], [1] [5]. [6], [7].
[8].

In addition, we should expect implicit tag-
ging to be more robust than explicit manual
tagging for two reasons. Firstly, the users are
not interrupted during the experience process.
The tags are therefore spontaneous and do not
suffer from conscious interpretation of the con-
tent, which would occur if the users were asked
to tag the media explicitly [3] [9]. Secondly, the
implicit tags are based on a set of basic emo-
tions, which are universal to human beings to
a large extend [3]. They are less influenced by
culture and should therefore generalize across
users.

1.3 Applications & Ethical Implications

Tags obtained from implicit affective tagging
have a number of important applications in
media-content-systems. The tags may be used
to evaluate the accuracy of the manual tags,
or they may be treated on par with the explicit
tags to improve search performance [1] [3]. The
implicit tags may also be used for user profiling
through collaborative filtering [3].

Implicit affective tagging also enables dubi-
ous and malicious applications. Since the pro-
cess works primarily at a low conscious level,
the same system may be used to design adver-
tisement content which by-passes the observers
conscious thinking and affects them subcon-
sciously. The system might also covertly be
used to extract unwanted information from the
users interacting with it. For example, it could
be used to extract political opinions whenever
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Fig. 1: The mean locations of the stimuli on
the arousal-valence space for the 4 conditions
(LALV, HALV, LAHV, HAHV). Liking is en-
coded by color: dark red is low liking and
bright yellow is high liking. Dominance is en-
coded by symbol size: small symbols stand for
low dominance and big for high dominance.
Taken from Figure 6. in [11].

users watched video clips of political events.
This would clearly break the users privacy, as
discussed by Fairclough [10].

2 DATABASE

2.1 Description

We use the database DEAP as described by
Koelstra et al. in [11]. The database was based
on 32 participants, who each watched a 1
min. music video clip from a total of 40
music videos. Physiological signals for each
participant were recorded during each clip.
The biosensors used were Galvanic Skin Re-
sponse (GSR), blood volume pressure (BVP),
respiration, skin temperature, Electromyogra-
phy (EMG), Electrooculography (EOG) and
Electroencephalography (EEG). All biosensors
recorded at 512Hz sampling rate. The place-
ment of the peripheral biosensors are shown
in Figure 2.

After each clip participants self-reported on
the continuous affective dimensions valence,

Fig. 2: Placement of peripheral physiological
sensors. Four Electrodes were used to record
EOG and four for EMG (zygomaticus major
and trapezius muscles). In addition, GSR, BVP,
temperature and respiration were measured.
Taken from Figure 3. in [11].

Fig. 3: Images used for self-assessment.
Manikins from top to bottom: valence, arousal,
dominance and liking. Taken from Figure 5. in
[11].

arousal, dominance and liking on a scale 1-
9. Participants used Self Assessment Manikins
(SAMs) as shown in Figure 3. Please see ap-
pendix for a more details and a discussion of
possible issues relating to our project.

In our work we will make use of the pe-
ripheral biosensors: GSR, BVP, respiration, skin
temperature, EMG and EOG. These modalities
are known to contain a significant amount of
affective information for characterising images,
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video and music [7] [9] [4] [8]. We will refer to
the participants as subjects, and to the music
videos as either media or stimuli.

3 METHODOLOGY

3.1 Tags in Continuous Space
We are going to use the self-reported ratings as
the ground truth w.r.t. each subject, and their
mean as the ground truth w.r.t. the population.
That is, we assume there exists an individ-
ual label for each subject and a population
label for all subjects. Predicting the population
label is the end goal of our system. Taking
the self-reports as ground truth could lead to
various modelling problems. Ratings could be
influenced by culture, personality, mood etc.
However, we expect the usage of SAMs to
alleviate some of these problems [12].

We will use the affective dimensions valence,
arousal, dominance and liking. Valence and
arousal have been able to distinguish between
a variety of stimuli types, ranging from music
to images and advertisements [13] [8] [7] [14]
[15]. Dominance has been used to characterize
music and advertisements [8] [7]. We also make
use of the liking rating, because it captures
the notion that on average some media are
preferred over other media.

Pantic et al. finds that it is unclear whether
a continuous representation or a discrete rep-
resentation is best for implicit affective tagging
[3]. Therefore we evaluated the discriminative
power of partitioning valence, arousal, domi-
nance and liking into (low, high) values, where
the threshold was set to five. We calculated
the mean agreement levels and Fleiss’ Kappa
across all subjects. The calculated levels range
from low to fair, which indicates that the dis-
crete representation would be a poor choice.

TABLE 1: Agreement Levels

Valence Arousal Dominance Liking
Mean Agree. 0.696 0.574 0.592 0.667
Fleiss Kappa 0.381 0.119 0.134 0.244

We therefore chose to use continuous affec-
tive dimensions. Several studies have shown
that media can be separated well by continuous
affective labels from self-response [14] [15] [7].

From the continuous representation, any point
can afterwards be mapped to a correspond-
ing discrete label that users may then search
for. The continuous representation also has the
potential to capture more structure between
media. For example, media tagged unhappy is
more related to media tagged annoyed than it
is to media tagged enthusiastic. This could be
exploited by the search engine to improve the
search.

We normalize all the labels to have zero
mean and standard deviation one across all
subjects. This normalization enables us to iso-
late the predictive performance of our models
from any bias which may exist in the data.

3.2 Process
Our implicit affective tagging system is illus-
trated in Figure 4. We first construct regression
models, which will predict labels for each (sub-
ject, stimuli) pair. The best model is then used
to predict affective labels for each subject. We
then take the mean of these predictions as the
population label.

Physiological Signals

Predicted Labels For Each Subject

Predicted Population Label

Regression Models

Mean Over Predictions

Fig. 4: Data flow of the implicit affective tag-
ging system.
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3.3 Subject-Independent Model vs.
Subject-Dependent Model
It is an open research question whether or not
our models should be subject-dependent. Stud-
ies have observed that subjects exhibit individ-
ual idiosyncrasies, and that their physiological
signals w.r.t. the same stimuli varies consider-
ably on a day-to-day basis [16] [17]. Further-
more, it has been observed that generalization
over unseen subjects is a very difficult problem
[6] [14]. Nevertheless, some researchers have
been able to build subject-independent models
successfully [5], [6], which indicates that there
exists features which are correlated with affect
independently of the subject.

This motivates us to experiment with both
subject-independent and subject-dependent
models. For the subject-independent model,
we will train the model on 24 subjects and
test it on the remaining 8 subjects using
leave-one-subject-out cross-validation. For
the subject-dependent model, we will train
the model on 30 stimuli and test it on the
remaining 10 stimuli using leave-one-stimuli-
out cross-validation. This will maximize the
data usage and reserve 25% of the samples for
testing.

3.4 Evaluation Metrics
We use the mean squared-error, cosine similar-
ity, top match rate and ranking loss metrics
to evaluate our models. These are described
by Meng et al. in [18]. We implement top
match rate on the absolute numerical values,
to investigate absolute changes. We implement
ranking loss divided by two, due to a typo in
the implementation. To limit the scope of the
project, we will not calculate any evaluation
metrics for each affective dimension. See [1]
and [19] for regression and classification results
w.r.t. each affective dimension.

We take the direction of the label to be the
most important property, which implies that
we identify the best model as the one which
maximizes cosine similarity. This is less sen-
sitive to individual subject rating differences
than the mean squared-error.

We will evaluate each model w.r.t. its ability
to predict labels for (subject, stimuli) pairs, and

we will evaluate the best model w.r.t. its ability
to predict the population label. We will also
carry out two-tailed t-test to identify models
which perform significantly better than the
Mean Model. The evaluation w.r.t. the popu-
lation label was also carried out by Koelstra et
al. for classification accuracy [1].

We establish two benchmark models. The
first is the Mean Model, which predicts a label
with the mean over the training set. This is
equivalent to linear regression without features
from physiological signals. The second model
is the Random Model, which takes a standard
multivariate Normal random variable as its
prediction. See appendix for further details.
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4 EXPERIMENTS

4.1 Feature Extraction
Predicting affective labels from physiological
signals has been studied extensively in the
literature [11], [6], [7], [14] and [8]. As we
are already tackling the less studied problem
of implicit affective tagging, we decide to not
invent new features from physiological sig-
nals. We therefore extract the same features as
Koelstra et al. [11]. Their features were picked
carefully and capture all immediately relevant
information for our problem. Furthermore, by
using the same set of features we are able to
compare our results to theirs.

For preprocessing, the first three seconds of
each physiological signal was taken as baseline
and its mean was subtracted from the rest of
the signal. We then extracted the following 66
features in Matlab R2013a:

• GSR
– Basic statistics: average skin resis-

tance, average of derivative, average
of derivative for negative values only,
proportion of negative samples in the
derivative over all samples

– Time domain: number of local minima
in the GSR signal, average rising time
of the GSR signal

– Frequency domain: 10 spectral power
in the [0-2.4]Hz bands, zero crossing
rate of Skin conductance slow re-
sponse (SCSR) [0-0.2]Hz, zero cross-
ing rate of skin conductance very
slow response (SCVSR) [0-0.08]Hz,
SCSR and SCVSR mean of peaks
magnitude

For the time domain features we applied a
moving-average interpolation to reduce the
noise of the signal.

The basic statistics and frequency domain
features have been noted to work well in many
studies [4] [8] [5] [20] [21]. Time domain fea-
tures, such as peak occurrences, have also been
suggested in the literature [8].

• BVP
– Basic statistics: Average and standard

deviation of HR (Heart-rate),
– Time domain: average and standard

deviation of heart rate variability (in-
terbeat interval lengths), heart rate

– Frequency domain: energy ratio be-
tween the frequency bands pres-
sure [0.04-0.15]Hz and [0.15-0.5]Hz,
spectral power in the bands ([0.1-
0.2]Hz, [0.2-0.3]Hz, [0.3-0.4]Hz), low
frequency [0.01-0.08]Hz, medium fre-
quency [0.08-0.15]Hz and high fre-
quency [0.15-0.5]Hz components of
HRV power spectrum.

• Respiration
– Basic statistics: average respiration

signal, mean of derivative, standard
deviation, range or greatest breath,

– Time domain: breathing rate, average
peak to peak time, median peak to
peak time

– Frequency domain: band energy ra-
tio (difference between the logarithm
of energy between the lower (0.05-
0.25Hz) and the higher (0.25-5Hz)
bands), breathing rhythm (spectral
centroid), 10 spectral power in the
bands from 0 to 2.4Hz,

• Skin temperature
– Basic statistics: average, average of its

derivative,
– Frequency domain: spectral power in

the bands ([0-0.1]Hz, [0.1-0.2]Hz)
• EMG and EOG

– Basic statistics: energy of the signal,
mean and variance

– Time domain: eye blinking rate

We point out that almost all our the fea-
tures are invariant to perturbations in time.
For example, a signal produced by an event
at a certain time would yield the same feature
values as a signal produced by the same event
at a different time. This gives us confidence that
the model will generalize to new stimuli.
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4.2 Feature Selection

We choose to apply unsupervised learning
methods to select a subset of features. This
differentiates our approach from Soleymani et
al [19].

We first applied Principal Components Anal-
ysis (PCA) [22], which we found to be inef-
fective. We then applied Independent Com-
ponent Analysis (ICA) [22]. The assumption
made by ICA is that independent physiological
processes of the human body are responsible
for the features. This a strong and bold assump-
tion. Nevertheless, the same assumption has
been applied to studying Electroencephalog-
raphy (EEG) signals and Magnetoencephalog-
raphy (MEG) images with measurable success
[23] [1]. As anticipated, this appeared to work
better than PCA. Please see appendix for im-
plementation and a detailed analysis of PCA
and ICA.

We normalize all features to have mean zero
and standard deviation one across all subjects
and stimuli.

At the end of our project, we found that our
models based on ICA features did not yield
significant results. Therefore we also performed
a linear regression analysis on a feature-by-
feature basis, to investigate whether a hand-
picked set of features would have sufficed. Un-
fortunately, no such set of features appeared to
exist across all subjects. In particular, our anal-
ysis yielded evidence in favour of the subject-
dependent model. Please see appendix for the
detailed analysis.

4.3 Models

We apply Linear Ridge Regression (LRR). If
there is a linear relationship between the phys-
iological signals and the labels, LRR should
effectively weight the most important param-
eters. LRR appeared to work for Soleymani et
al. on our dataset [19], while Bayesian Ridge
Regression was found to work for Koelstra et
al. on subjects watching video clips [1].

Linearity is a strong and bold assumption,
which certainly does not hold between all our
features and labels. We should therefore also
consider non-linear models, which work well

on small datasets. K-Nearest Neighbours Re-
gression (KNN) is one model, which has been
used in several studies [4] [14]. We apply KNN
with Euclidean norm, where we only need to
learn the parameter for the number of neigh-
bours. If the features clusters well, then KNN
should work well on the dataset.

After initial experiments, we found that LRR
and KNN did not yield good results. We
therefore also applied Kernel Ridge Regression
(KRR) with a Gaussian kernel. It is a natural
extension to LRR, and it is closely related to
the Support Vector Machines for Regression
(SVR), which have been applied in the litera-
ture previously [14] [4]. We assume the features
are normally distributed in the affective di-
mensions space and choose a Gaussian kernel.
Given more time, other kernels should also be
applied.

We train a separate model for each affective
dimension.

4.4 Fusion
We apply both feature-level fusion (early fu-
sion) and decision-level fusion (late fusion), as
both types have shown success in the literature
[6] [14].

Each modality responds to an event
uniquely. A spike in the signal triggered by a
certain event has its own time-lag, duration
and amplitude. This could cause problems
for feature-level fusion. However, we have
chosen all of our features to be almost entirely
time-invariant. Furthermore, for GSR, BVP,
respiration and skin temperature, we have
several features based on spectral power
bands, which allows our models to give
weight to spikes of certain durations. We
therefore do not consider feature-level fusion
to be a problem for our models.

For the subject-independent models, we use
leave-one-subject-out cross-validation in the
training phase. We therefore perform feature-
level fusion for all models based on both the
extracted features as well as 2, 4 and 6 first
ICA components. We also perform decision-
level fusion based on the extracted features, as
we expect these to contain more information
than the ICA components. For each modality
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we apply KRR to capture the non-linear rela-
tionships between features and labels, and then
we apply Least-Squares Linear Regression (LR)
on the predicted labels to weight the predictions
for each modality linearly.

For the subject-dependent models, we use
leave-one-stimuli-out cross-validation in the
training phase. Since we only have 29 samples
available, we choose to only perform feature-
level fusion for all models based on the first 2,
4 and 6 ICA components.

4.5 Results

The results for the subject-independent models
are given in Table 2. We observe that all the
models perform significantly better than the
Mean Model w.r.t. ranking loss, but not w.r.t.
any other evaluation metrics. We also note that
several models appear to be better than both
the Mean Model and Random Model w.r.t.
cosine similarity and mean squared-error. In
particular, LRR appear to perform consistently
better than the KRR and KNN models. We
speculate that KNN does not perform well
because the features do not cluster tightly w.r.t.
the labels. Since KRR with a Gaussian kernel is
considered to be a broader and more powerful
model than LRR, this indicates that KRR is
overfitting the data [22]. Indeed, this is con-
firmed from the validation errors in appendix
Figure 19, 20 and 21. Interestingly, the decision-
level fusion model appears to perform almost
as well as the best feature-level fusion model.
This indicates that dimensionality reduction
and KRR on each modality capture the same
amount of information. We conclude that the
subject-independent models appear to capture
some of the underlying relationship between
physiological signals and affective labels.

The results for the subject-dependent models
are given in Table 3. It is evident that the Mean
Model outperforms all of the other models, and
we must therefore conclude that our models
have not captured any significant information
relating physiological signals to affective labels.
This confirms previous results in the literature
for subject-dependent models on our the data
set [19] for subject-dependent models. We spec-
ulate that this is due to the small sample size.

Finally, we investigate the ability of our best
subject-independent model, LRR ICA4, to pre-
dict predict the population label for a new
stimuli. The results are shown in Figure 5.
For comparison we have plotted the optimal
result in Figure 6, where each (subject, stimuli)
prediction is replaced by the true label. This
is the performance we would have obtained if
our model was perfect. The LRR ICA4 model
yields high errors and does not improve with
the number of subjects, which shows that the
model is inadequate for predicting the popu-
lation label. We speculate that the poor perfor-
mance is due to an additional noise factor. The
model first predicts the affective label for each
subject, which incurs a certain noise. Then the
mean is taken over these labels to predict the
population label, which incurs an additional
amount of noise.
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Model Mean squared-error Cosine similarity Ranking loss Top match rate
KNN ICA2 5.48717 ± 1.257 0.04049 ± 0.126 *0.244271 ± 0.025 0.209375 ± 0.105
KNN ICA4 6.30159 ± 1.225 -0.00212 ± 0.082 *0.241667 ± 0.0135 0.228125 ± 0.047
KNN ICA6 5.41899 ± 1.182 0.01662 ± 0.085 *0.233333 ± 0.036 0.209375 ± 0.09
KNN (All modalities) 5.40466 ± 1.066 0.11410 ± 0.211 *0.231771 ± 0.041 0.240625 ± 0.087
KRR ICA2 5.73113 ± 1.369 0.03817 ± 0.086 *0.247135 ± 0.03 0.212500 ± 0.065
KRR ICA4 6.30280 ± 1.283 0.05186 ± 0.12 *0.245313 ± 0.034 0.209375 ± 0.061
KRR ICA6 6.10283 ± 1.443 0.02131 ± 0.057 *0.235417 ± 0.017 0.250000 ± 0.056
KRR (All modalities) 23.9683 ± 46.012 0.05016 ± 0.194 *0.240885 ± 0.040 0.221875 ± 0.146
LRR ICA2 4.97935 ± 1.216 0.16873 ± 0.25 *0.230208 ± 0.057 0.290625 ± 0.238
LRR ICA4 4.96593 ± 1.19 0.17845 ± 0.274 *0.229167 ± 0.0586 0.290625 ± 0.238
LRR ICA6 4.98389 ± 1.21 0.16583 ± 0.266 *0.227865 ± 0.063 0.290625 ± 0.238
LRR (All modalities) 4.99066 ± 1.233 0.13848 ± 0.222 *0.226302 ± 0.0628 0.253125 ± 0.201
KRR+LR (Decision-level fusion) 5.37779 ± 1.037 0.15612 ± 0.214 *0.222656 ± 0.051 0.278125 ± 0.183
Mean Model 5.08870 ± 1.272 -0.30864 ± 0.239 0.3244790 ± 0.051 0.396880 ± 0.208
Random Model, N(0,1) 8.00000 ± 5.67 0.00000 ± 0.5 0.2500000 ± 0.1225 0.250000 ± 0.435

TABLE 2: Subject-independent models: mean evaluation metric values over each subject and
corresponding standard deviations. The best model for each evaluation metric is indicated by
bold font. A two-sided t-test was calculated for all models w.r.t. the Mean Model. Asterisk (*)
indicates that the test result is significant at 95% confidence level. The reader should observe
that our ranking loss metric is divided by two as compared to the definition given by Meng et
al. in [18].

Model Mean squared-error Cosine similarity Ranking loss Top match rate
KNN ICA2 5.41092 ± 1.25 0.009380 ± 0.113 0.237240 ± 0.023 0.259375 ± 0.057
KNN ICA4 5.34627 ± 1.226 0.027682 ± 0.088 0.227865 ± 0.018 0.268750 ± 0.064
KNN ICA6 5.19881 ± 1.096 0.072793 ± 0.097 0.228906 ± 0.024 0.268750 ± 0.099
KRR ICA2 6.01722 ± 1.236 0.122084 ± 0.122 0.235937 ± 0.023 0.309375 ± 0.077
KRR ICA4 5.67165 ± 1.091 0.143894 ± 0.073 0.221354 ± 0.013 0.262500 ± 0.062
KRR ICA6 5.41496 ± 1.129 0.199371 ± 0.086 0.209635 ± 0.018 0.278125 ± 0.066
LRR ICA2 4.98369 ± 1.168 0.211393 ± 0.074 0.196354 ± 0.022 0.284375 ± 0.075
LRR ICA4 5.01024 ± 1.174 0.220811 ± 0.084 0.200781 ± 0.021 0.278125 ± 0.049
LRR ICA6 5.01521 ± 1.15 0.219693 ± 0.075 0.201042 ± 0.016 0.281250 ± 0.065
Mean Model 4.94490 ± 1.227 0.207494 ± 0.077 0.194271 ± 0.018 0.284375 ± 0.056
Random Model, N(0,1) 8.00000 ± 5.67 0.000000 ± 0.5 0.250000 ± 0.1225 0.250000 ± 0.435

TABLE 3: Subject-dependent models: mean evaluation metric values over each stimuli and
corresponding standard deviations. The best model for each evaluation metric is indicated by
bold font. No models performed significantly better than the Mean Model. The reader should
observe that our ranking loss metric is divided by two as compared to the definition given by
Meng et al. in [18].
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Fig. 5: Evaluation metrics w.r.t. true population label for the subject-independent LRR ICA4
model. The labels are only tested w.r.t. the 8 test subjects, which were previously designated to
be the test subjects.

Fig. 6: Evaluation metrics w.r.t. true population label for a model which predicts each (subject,
stimuli) pair with its true affective labels. This is a perfect model and the best we can hope to
achieve in regard to predicting the population label based on a mean of affective subject labels.
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5 FURTHER WORK

The features we used were largely taken from
previous work on predicting affective response
to pictures and videos. However, we may spec-
ulate that music videos elicit different physi-
ological signals from these. Therefore further
work should be directed at constructing new
features specific to music videos.

Adding the modalities video and EEG sig-
nals may also improve our system performance
significantly [6], [14], [24], [1]. If the user was
allowed to move around, we may also take
body movement into account, as it can be can
be used effectively predict affective state [25].
In particular, it would be interesting to identify
laughter from body movement and use it as
input to our models [26].

Fisher Projection and Recursive Feature
Elimination appear to be promising dimension-
ality reduction methods [17] [1].

Our limited success with subject-
independent models suggest that we should
apply Multi-Task Learning to learn the
characteristics of each subject [16] [18]. We
may also consider gender-dependent models,
as males and females have been observed to
give markedly different affective responses to
video clips [20].

6 CONCLUSION

Implicit affective tagging is an automatic
method for inferring affective tags for me-
dia based on analysing a person experiencing
the media. In this project we attempted to
construct an implicit affective tagging system
with the end goal of tagging media content
based on peripheral physiological signals from
users. We used dataset of 32 subjects watching
1. min music video clips. We took the affec-
tive labels self-reported by the subjects to be
the ground truth w.r.t. each subject, and their
mean as the ground truth w.r.t. the population.
We extracted a large set of features, and ap-
plied KNN, LRR and KRR to construct subject-
dependent and subject-independent models for
predicting the affective labels. Our subject-
independent models yielded some significant
results, but failed to predict the population
label. Further work is needed in the direction

of constructing new features and fusioning ad-
ditional modalities.
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APPENDIX A
DATABASE

We use the database DEAP as described by Koelstra et al. in [11]/, as described briefly in Section
2. The database was based on 32 participants, who each watched a 1 min. music video clip
from a total of 40 music videos. Participants were from The Netherlands and from Switzerland,
and ranged from 19 to 37 years of age. Participants were fitted with biosensors and their
physiological signals occurring during each music video clip were recorded. The biosensors used
were Galvanic Skin Response (GSR), blood volume pressure (BVP), respiration, skin temperature,
Electromyography (EMG), Electrooculography (EOG) and Electroencephalography (EEG). The
BioSemi ActiveTwo system was used, see http://www.biosemi.com/. All biosensors recorded
at 512Hz sampling rate, which was afterwards down-sampled to 128 Hz. Frontal face video was
also recorded.

After watching each clip, participants self-reported on the continuous affective dimensions
of valence, arousal, dominance and liking on a scale 1-9. Participants used Self Assessment
Manikins (SAMs), which are known to work better across different cultures [12], see Figure 3.
Participants also recorded their on a scale 1-5.

Based on a literature review, Gunes and Pantic observe that modelling continuous affective
dimensions may be quite difficult [6]. They note that valence is not universally understood and
that the labelling process may therefore be corrupted. In this regard, Koelstra et al. performed a
statistical correlation analysis between the affective dimensions to validate that the participants
understood the manikins. Their analysis showed that the participants indeed were able to
differentiate between the affective dimensions.

The music videos were chosen according to a previous experiment, such that they would be
distributed equally in the four quadrants of the valence-arousal space and induce the maximum
affective response. We should therefore assume that any positive results we obtain on this
database may be over-confident and that further research should be conducted to verify that
the results also hold for music videos with lower affective response. Between music videos
participants only had a very short break, so it is very possible that the physiological responses
to one video affects the next video. However, since the order of the music videos were chosen
randomly for each participant, we will assume that the this overlapping effect is distributed
uniformly across samples and should not induce any modelling bias.

Please see Koelstra et al. in [11] for further details on the database.
We limit ourselves to the peripheral physiological signals, as these are known to carry a

significant amount of information. Bradley et al. have carried out several studies on pleasant
and unpleasant images showing that muscle activity recorded from EOG and EMG is highly
correlated with valence [7]. Heart rate acceleration and deceleration is also correlated with va-
lence, while GSR is highly correlated with arousal [7] [4] [8]. There is evidence that physiological
signals are also correlated with dominance, see Kim et al. [8].
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APPENDIX B
BENCHMARK MODELS

We establish two benchmark models, which we will compare our models against:
Mean Model: For the subject-independent model, the Mean Model predicts a label for a new

(subject, stimuli) pair as the mean of all previously observed (subject, stimuli) pairs. For our
subject-dependent models, the Mean Model predicts a new stimuli as the mean of all the other
labels from the same subject. It is a naive benchmark, but in our setting it is equivalent to training
a Linear Regression model without any physiological features. This is the best model we could
obtain if we did not observe the physiological features. Any model which performs better than
the Mean Model must be capturing some of the underlying relationship between physiological
features and labels.

Random Model: The Random Model predicts any (subject, stimuli) pair with a draw from
a standard Normal distribution x ∼ N(0, 1). This is the best prediction we could give, if all
we knew was that the data was distributed according to the standard Normal distribution. The
model was evaluated based on 10, 000 simulations in Matlab 2013a.
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APPENDIX C
COMPARABLE RESULTS IN THE LITERATURE

Koelstra et al. have already performed some analysis on our dataset [11]. They used Fishers
linear discriminant for feature selection and a Gaussian naive Bayes classifier for classification
w.r.t. self-reported valence, arousal and liking labels. They extracted the same features as us.
They performed feature-level fusion by concatenating all the features together. They performed
decision-level fusion by applying the Gaussian naive Bayes classifier to each modality, and then
applying the classifier again to the results from each modality. Their results are given in Figure
7. Their models do not yield considerably better results than predicting with the majority class,
which indicates that our problem is quite difficult.

Fig. 7: Taken from Table 7. in [11].

Our dataset was also used by Soleymani et al. [19]. They extracted the same features as us from
the peripheral physiological signals, and applied LRR. They trained subject-dependent regression
models, which relates their work closely to ours. Hpwever, contrary to our approach Soleymani et
al. did not perform any dimensionality reduction. They also applied Gaussian Process Regression
and Relevance Vector Machine regression, but these did not yield any improvement compared
to LRR. For the peripheral physiological signals, their results are only significant for the arousal
modality, which also indicates that our problem is quite difficult. See Figure 8.

Implicit affective tagging is also investigated by Koelstra et al. in [1] for video clips. They
extract a set of features from EEG signals and frontal video of the subject seeing video clips.
Then then use Bayesian Ridge Regression, a variant of LRR, to predict affective response w.r.t.
valence, arousal and dominance. For feature-level fusion BRR is applied to features from both
modalities. For decision-level fusion, BRR is applied to each modality, and then applied again to
the outputs from each modality. Their models are significantly better than predicting with the
Mean Model w.r.t. arousal and dominance.
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Fig. 8: Taken from Table II in [19].

Taken together, these studies indicate that other modalities, such as frontal video or EEG
signals, may be required to obtain effective implicit tags.
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APPENDIX D
PRINCIPAL COMPONENTS ANALYSIS

Principle Component Analysis (PCA) is an effective method to extract a smaller set of features
as a linear combination of the original features [22]. PCA extracts the K orthogonal vectors
which span the directions of maximum variation in the data. By only taking these directions
into account, we hope to remove only a minimum amount of information from the physiological
signals.

We used the built-in Matlab function princomp and applied PCA to our data set. From this,
we observed that the first three principle components were not effective at separating samples
w.r.t. valence and arousal. The samples seemed to be more separable for a single subject, but
clearly we would still need a highly non-linear function to separate them.
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Fig. 9: First three PCA components of all features across all subjects labelled by high / low
valence and arousal respectively. Scores greater than 5 are defined as high and lower as low. The
data appears to be highly inseparable.

* *
Fig. 10: First three PCA components of all features for the first subject (subject one) labelled by
high / low valence and arousal. Scores greater than 5 are defined as high and lower as low. The
data appears to be inseparable.
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APPENDIX E
INDEPENDENT COMPONENTS ANALYSIS

We applied Independent Component Analysis (ICA) [22] to our extracted features. We based
our implementation on that by Brian Moore (brimoorumich.edu) at http://www.mathworks.
com/matlabcentral/fileexchange/authors/277668, which centers and whitens the data, and then
applies ICA assuming the data is multivariate Normally distributed.

To the naked eye, it was impossible to assess whether first three ICA components were able
to separate the samples better than the first three PCA components. To evaluate whether or not
ICA would be a good dimensionality reduction method, we instead compared its coefficients to
those of PCA. From these it appeared that ICA was more selective regarding the features. In its
first component ICA put the majority of its weight on 6− 8 features, while PCA put its weights
uniformly across a much larger set of features. Due to time constraints, we therefore chose to
continue with ICA.
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*

*
Fig. 11: Top) Weights for the first PCA component. Bottom) Weights for the first ICA component.
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APPENDIX F
LINEAR REGRESSION ANALYSIS

We performed a linear regression analysis to evaluate whether or not a small subset of features
could be used. For each affective dimension and each feature, we fitted a linear regression with
intercept and estimated the mean parameter value of the feature and its 95% confidence interval.
We used the built-in Matlab function glmfit. This was done for all subjects and stimuli, and for
subject one and all stimuli. The mean value of the parameter for each feature, together with
its confidence interval, should give us a good indication of how effective it is at predicting the
affective score.

As expected from the literature, we observed that GSR and PLTH features were highly
correlated with arousal, while EOG, ZEMG and BVP features were correlated with valence
across all subjects. Interestingly, we also observed that EOG and respiration were correlated
with dominance and that GSR was the main modality correlated with liking. Furthermore, we
also observed that the correlations were often unique to each subject. For example, Figure 12
show the linear regression analysis across all subjects and for only subject one w.r.t. arousal.
From this we observe that BVP features correlate very differently for subject one than for all
subjects. These, and other plots, supports our hypothesis of a model for each participant.

The figures below show the linear regression analysis for all affective dimensions across all
subjects and for subject one only. The small box to the left shows the five features with highest
absolute value.
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*

*
Fig. 12: Top) Linear regression analysis for each feature, with intercept, across all subjects
and stimuli w.r.t. arousal. Errorbars indicate 95% confidence intervals for the parameter value.
Bottom) Linear regression analysis for each feature, with intercept, for first subject and all stimuli.
Errorbars indicate 95% confidence intervals for the parameter value.
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*

*
Fig. 13: Top) Linear regression analysis for each feature, with intercept, across all subjects
and stimuli w.r.t. valence. Errorbars indicate 95% confidence intervals for the parameter value.
Bottom) Linear regression analysis for each feature, with intercept, for first subject and all stimuli.
Errorbars indicate 95% confidence intervals for the parameter value.
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*

*
Fig. 14: Top) Linear regression analysis for each feature, with intercept, across all subjects and
stimuli w.r.t. dominance. Errorbars indicate 95% confidence intervals for the parameter value.
Bottom) Linear regression analysis for each feature, with intercept, for first subject and all stimuli.
Errorbars indicate 95% confidence intervals for the parameter value.
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Fig. 15: Top) Linear regression analysis for each feature, with intercept, across all subjects and
stimuli w.r.t. liking. Errorbars indicate 95% confidence intervals for the parameter value. Bottom)
Linear regression analysis for each feature, with intercept, for first subject and all stimuli.
Errorbars indicate 95% confidence intervals for the parameter value.
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APPENDIX G
MODEL IMPLEMENTATIONS

We implemented the models, cross-validation and testing procedures in Matlab R2013a. The
model implementations were based on former lecture notes, but are equivalent to those given
by Hastie et al. in [22]. We also used the Matlab built-in KNN search method knnsearch.
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APPENDIX H
SUBJECT-INDEPENDENT MODELS

The figures below show the validation error for the subject-independent models based on the
ICA features. We observe a significant amount of overfitting.

Fig. 16: KNN ICA2 validation error as a function of K, number of neighbours.

Fig. 17: LRR ICA2 validation error as a function of γ ∈ {0, 0.1, . . . , 5.0}, the regularization
parameter. Higher γ values imply more regularization and therefore lower parameters weights.
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Fig. 18: LRR ICA4 validation error as a function of γ ∈ {0, 0.1, . . . , 5.0}, the regularization
parameter. Higher γ values imply more regularization and therefore lower parameters weights.
This was the best subject-independent model.

Fig. 19: KRR ICA2 validation error as a function of γ ∈ {2−40, 2−39, . . . , 2−26}, the regularization
parameter, and σ ∈ {27, 27.5, . . . , 212}. Higher γ values imply more regularization and therefore
lower parameter weights, where as higher σ values imply that more training samples are used
to predict the label of a new sample.
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Fig. 20: KRR ICA4 validation error as a function of γ ∈ {2−40, 2−39, . . . , 2−26}, the regularization
parameter, and σ ∈ {27, 27.5, . . . , 212}. Higher γ values imply more regularization and therefore
lower parameter weights, where as higher σ values imply that more training samples are used
to predict the label of a new sample.

Fig. 21: KRR ICA6 validation error as a function of γ ∈ {2−40, 2−39, . . . , 2−26}, the regularization
parameter, and σ ∈ {27, 27.5, . . . , 212}. Higher γ values imply more regularization and therefore
lower parameter weights, where as higher σ values imply that more training samples are used
to predict the label of a new sample.
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APPENDIX I
SUBJECT-DEPENDENT MODELS

The figures below show validation error for the subject-dependent models based on the ICA
features. We again observe a significant amount of overfitting.

Fig. 22: KNN ICA2 validation error as a function of K, number of neighbours.

Fig. 23: LRR ICA2 validation error as a function of γ ∈ {0, 0.1, . . . , 5.0}, the regularization
parameter. Higher γ values imply more regularization and therefore lower parameters weights.
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Fig. 24: KRR ICA2 validation error as a function of γ ∈ {2−40, 2−39, . . . , 2−26}, the regularization
parameter, and σ ∈ {27, 27.5, . . . , 212}. Higher γ values imply more regularization and therefore
lower parameter weights, where as higher σ values imply that more training samples are used
to predict the label of a new sample.
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