
Selected Graphical Models and Their Applications in Data Analysis

Iulian Vlad Serban
Department of Mathematical Sciences,

University of Copenhagen, Copenhagen, Denmark

Abstract—This is the final paper for the course Advanced
Topics in Data Analysis, University of Copenhagen, 2012.
A broad range of graphical models are described and
implemented for practical applications. First, ancestral and
Markov blanket sampling for Bayesian networks are de-
scribed. Next, Gaussian mixture models for texture synthesis
are described, implemented and tested. A suggestion to
improve the texture synthesis is proposed and implemented.
Then, Restricted Boltzmann Machines are presented and the
Contrastive Divergence (CD) training procedure is described.
An altered version of CD is suggested and compared em-
pirically to the original CD. Lastly, object tracking with
a Kalman filter is described. This is implemented with a
standard particle filter approximating it. Furthermore, a
mixed-state particle filter is suggested and implemented.
The Kalman filter is compared with the two particle filters
empirically.

Keywords-Bayesian networks; Markov blanket sampling;
Gibbs sampling; Gaussian mixture models; texture synthesis;
Restricted Boltzmann Machines; object tracking; Kalman
filter; particle filter;

I. BAYESIAN NETWORKS

A. Ancestral Sampling

We start by explaining the ancestral sampling method
for Bayesian networks. The goal of ancestral sampling
is to provide samples for the entire distribution of the
Bayesian network, see [1, p. 365]. We first consider the the
joint probability distribution defining a Bayesian network,
[1, p. 362]:

p(x) =

K∏
k=1

p(xk|pak) (1)

The joint probability distribution can be written as a
product of distributions, for each random variable condi-
tioned on the parents of that random variable. Suppose
we order the nodes in such a way that any node only has
links going out to higher numbered nodes. Then, A node
xk will never have as parent xm if m ≥ k. Therefore we
start by sampling the lowest numbered node, x0, which
by definition has no parents. The probability of a certain
sample x0 will then be p(x0). We then go on to sample the
next node in the order and continue until we have sampled
all the nodes. Every time we sample a node, we use the
conditional distribution since we have already its parents.
Each such node will then contribute with a multiplying
factor p(xk|pak) to the joint distribution, yielding equation
(1).

This procedure presupposes that we have no observed
nodes. If we have observed nodes, which have no parents

or only parents that are also observed, we may use the
same procedure and simply set the observed variables
to the observed values instead of sampling them. If we
have observed nodes, which have unobserved parents, the
procedure breaks down. We would then have to condition
the parents of the observed nodes on the observed values
to obtain equation (1), but this is not a part of the ancestral
sampling procedure.

An alternative is the method of rejection. Here we
perform ancestral sampling as if all observed nodes, with
parents were unobserved. Once we obtain a sample, we
check if the observed nodes in the sample are equal to their
observed values. If they are equal we accept the sample,
and if not we reject the sample and repeat the procedure.
This will ensure that the produced samples are sampled
from the distribution of the Bayesian network, conditioned
upon the observed variables taking their observed values.
See [1, p. 528]. However, this method is only applicable
to discrete variables. In particular, it is only tractable for
small Bayesian networks, since the number of rejected
samples increases with the size of the network.

B. Markov Blanket Sampling

The Markov blanket sampling method samples a single
node, conditioned on the other nodes in the Bayesian
network. The method can be applied when wishing to
sample a single node in a Bayesian network, where
all other nodes are observed. It can also be applied as
a part of the Gibbs sampling procedure, as discussed
later. To understand Markov blanket sampling, we have
to understand what the Markov blanket is. The Markov
blanket for a variable xi, denoted by M , is the set of
other nodes in the Bayesian network, such that for other
nodes xj /∈ xM∪{i} ⇒ xi⊥xj | xM . The conditional
distribution for a node xi given all other nodes becomes,
[1, p. 382]:

p(x|xi 6=j) =
p(x1, . . . ,xD)∫
p(x1, . . . ,xD)dxi

=

∏
k p(xk|pak)∫ ∏
k p(xk|pak)dxi

=

∏
k∈{i∪M} p(xk|pak)∫ ∏
k∈{i∪M} p(xk|pak)dxi

(2)

By equation (2), we see that the Markov blanket M
consists of the parents of xi, the children of xi and finally
the parents of the children of xi. Indeed, the conditional
probabilities for the parents of xi and the parents of

the children of xi, will also cancel out, but they will
still remain as conditioned variables in the remaining
conditional probabilities, and therefore have to be included
in M . Thus, Markov blanket sampling is the method of
sampling a single node xi, conditioned on its Markov
blanket M .

C. Markov Blanket Sampling for Gibbs Sampling

The reader can find a description of Gibbs sampling in
[1, p. 542]. We proceed directly to relate Markov blanket
sampling to Gibbs sampling. By the Gibbs sampling
method, after picking a site i in the Bayesian network
we will sample it, conditioned on all other nodes in
the Bayesian network. This conditional probability is the
same as in equation (2). With this in mind, we can
perform Gibbs sampling as follows. Initialize all nodes
in the Bayesian network, from a distribution with strictly
positive probability for all configurations of the nodes.
For each iteration of the Gibbs sampler, either pick a
site i at random or pick at site i according to some
predefined order. Then, identify its Markov blanket and
sample the variable xi according to equation (2). We will
call this a Gibbs update. Repeat this procedure until either
a predefined number of sites have been samples, or until
all sites have been sampled once.

If there are any observed variables, these are set during
the initialization to the respective observed values. During
the procedure, whenever we pick a variable xi, which
has been observed, we simply leave the variable to the
observed value. Therefore, the Gibbs sampler is effectively
running only a subset of the variables in the Bayesian
network. For this subset of the variables all the properties
of the Gibbs sampler, described in [1, chapter 11.3], still
holds. Thus, as the number of Gibbs updates go to infinity,
the distribution of the produced sample is:

p(xnot observed|xobserved) (3)

This is exactly what we want. Therefore, Gibbs sampling
can be applied to Bayesian networks, which have observed
variables anywhere in the network.

D. Implementation

Ancestral sampling and Markov blanket sampling have
been implemented for [1, p. 362, Figure 8.2] in C++. The
nodes have been assumed to take only the values {0, 1},
with probability distributions representable by conditional
probability tables.

II. TEXTURE SAMPLING USING GAUSSIAN MIXTURE
MODELS

In this section, texture sampling will be described.
To perform it we will use Gaussian Mixture Models
(GMMs), see [1, p. 110-113]. The GMM is defined by
the probability density function:

p(x) =

K∑
k=1

πkN (x|µk,Σk) (4)

Here the parameters π are the mixing coefficients and each
N (x|µk,Σk), called a Gaussian component, is a multi-
variate normal probability density function, with means
µk and covariance matrix Σk. For the probability density
function to be valid, the covariance matrices must all be
positive-definite and the mixing coefficients must satisfy:

K∑
k=1

πk = 1 0 ≤ πk ≤ 1 (5)

The GMM arises from a scenario, where a data vector x is
drawn from distribution N (x|µk,Σk) with probability πk
for k ∈ {1, . . . ,K}. The GMM can also be represented
as a graphical model with two nodes: an observed node
X and, its parent, a hidden node Z. The hidden node Z
can take the discrete values {1, . . . ,K} with probabilities
πk. Given z = k, the visible node X then takes values
from N (x|µk,Σk).

A. Texture Synthesizing

The Gaussian mixture models, being Bayesian net-
works, are generative models, that is models that define
probability distributions for both the data and the model
parameters. This enables us to synthesize new data points,
given that the underlying model parameters are known.
See [1, p. 43 and p.365] for a short description. Therefore,
GMM can be used to synthesize textures.

The synthesis is performed as follows. First, N image
patches of size DxD are generated from a texture image.
This is done in either of two ways: 1) deterministic
sampling by cutting the texture image, in a top-down-
left-to-right order, into at least N disjoint image patches,
which will then form the samples, 2) random sampling
by picking N coordinates in the texture image uniformly
and, then, for each coordinate using the pixels in the DxD
square below and to the right of this coordinate to form
a sample. Then, the structure of the GMM is specified,
i.e. the number of Gaussian mixture components and the
initial values of the parameters. Now, the parameters of
the GMM are estimated using maximum likelihood. This
is done by maximizing the log-likelihood:

lnP (X|{µk, σk, πk}k) =

N∑
n=1

ln

(
K∑

k=1

πkN (xn|µk, σk)

)
(6)

However, this poses a serious problem. There can, in
general, be multiple local optima in the log-likelihood, as
noted in [1, p. 438]. This means an analytical closed form
solution does not exist, and instead an iterative scheme
must be applied. There are a number of ways to do this,
but one particular method has had considerable success
in maximizing the log-likelihood. This is the expectation
maximization algorithm (EM algorithm). A comprehensive
description of it can be found in [1, p. 438-439]. When
using the EM algorithm, one has to be careful from both
a theoretical and practical point of view, because the
procedure can produce degenerate solutions. This would

for example be the case if one of the Gaussian components
had variance and covariances going to zero, where its
mean was fixed on a single data point. Then the log-
likelihood would go towards minus infinity, because all
other data points would have a probability going towards
zero, which means that the terms in the inner sum goes
towards zero in equation (6). There is another problem,
which is more specific to the EM algorithm. The algorithm
requires computing the inverse and determinant of the
covariance matrices of each Gaussian component. Not
only is this computationally very expensive, but it can
also result in numerical errors, since the normalization
constant in the multivariate normal distribution grows
exponentially with the number of dimensions. To avoid
this, two precautions are taken. First, if either the entry-
wise norm of a covariance matrix becomes too small, or
the rank of the covariance matrix does not equal D2,
the covariance matrix is reset. Second, all probabilities
calculated in the program are constrained to be above some
very small constant, because they are theoretically always
strictly positive. Lastly, the each pixel intensity is scaled
linearly to be within [0, 1].

B. Transforming the data

So far, we have assumed that the data, in its scaled
format, fits perfectly with the GMM. Although the GMM
is a very rich model, this is not necessarily the case or
it might require an immense number of components to
model the data well. We will therefore take a statistical
approach to transforming the data, and apply the bijective
transformation

y = xTx, (7)

where x is an image patch. If xi was close to a uniform
distribution on [0, 1], then the transformation would make
the probability mass of yi skewed to the left, which poten-
tially would be better modeled by a normal distribution.

C. Implementation

A Gaussian mixture model was implemented in C++
with the EM algorithm for finding the maximum like-
lihood parameters, exact sampling using the Cholesky
decomposition and sampling using the MCMC metropolis-
hastings algorithm, see [1, p. 541], with the isotropic mul-
tivariate normal distribution as proposal distribution. The
precautions for the EM algorithm and the transformation,
discussed earlier, were also implemented. An interface for
loading images, training and testing the Gaussian mixture
model was also developed. The implementation was based
on the C++ linear algebra library Armadillo [11].

D. Empirical Results

A number of experiments were carried out on a set of
textures. First, the standard GMM was trained on 100
8x8 texture patches. The GMM was trained using 50
trials, where the means were initialized uniformly on [0, 1],
the covariance matrices were set to standard multivariate
isotropic covariance matrix, where the parameter solution

with the highest log-likelihood was choosen as the solu-
tion. Having a large number og Gaussian components did
not improve the solutions and often resulted in singular
covariance matrices. Therefore, 5, 6 and 10 Gaussian
components were used. Tests were carried out, using both
sampling methods described above. First, the means were
analyzed from graphical plots, but did not appear to convey
sufficient information for the naked eye to relate it to the
exact textures. They did however provide some indication,
of the variance of colors in the textures.

Second, the produced samples were analyzed. For most
image textures, the random sampling method seemed to
yield the best solution. However, for a downscaled version
of the ceiling texture, shown below, the deterministic
sampling method seems to have slightly worked better.
Although the ceiling texture has perfectly aligned black
spots, the GMM produced a texture with a higher variance
of color and more sporadic black spots. The reader should
keep in mind that the ceiling texture for which the GMM
is downscaled.

Third, the proposed transformation was analyzed
in depth by plotting densities of the color values for
each pixel. This was done for the wall texture, which
from the previous testings, seemed a good candidate
for sampling using GMMs. A standard GMM and a
GMM with the transformation was used, both with
only 3 Gaussian components to ensure that the EM
solutions was close to the maximum likelihood solution.
From the density plots, it appears that the wall texture
already resembles a normal distribution, but that standard
GMM models a quite differently distribution. The GMM
applying the transformation appears to model much the
same distribution as the Standard GMM, but seems to
have removed some of the noise in the tails. From the
experiment, it is impossible to say whether or not the
GMM with transformation works better. However, the
experiment shows that transformation of the data can
change the model and should therefore be investigated
further, in an attempt to improve the GMM.

Overall, the GMM models were found to have only a
partial success at sampling image textures. In particular,
they failed to capture a number of coherent structures in
the textures. There are a number of possible reasons for
this. It could be that the image patches needed to be larger,
such as for example 10x10 image patches, to properly
model the textures. This would be computationally in-
tractable and would require an alternative learning method.
Similarly the number of Gaussian components could be
increased, but this would also quickly lead to an intractable
learning. It is also likely that the texture structures are
difficult to capture using a GMM, for example because
of the correlation structure and large number of pixels.
It seems likely that a GMM would be better suited at
capturing the underlying color distribution, and not the
exact textures defined by pixels.

(a) Wall (b) Ceiling (c) Seeds

Figure 1: Texture Images

(a) Wall (b) Ceiling (c) Seeds

Figure 2: Sampled textures from GMM with data transformations. These are based on downscaled textures of the above.
Wall) 8x8 patches sampled from a 5-component GMM, trained on 40 random sampled patches. Ceiling) 8x8 patches
sampled from a 6-component GMM trained on 30 image patches, which were sampled deterministically. Seeds) 8x8
patches sampled from a 5-component GMM, trained on 50 random sampled patches.

0.0 0.5 1.0 1.5

0
1

2
3

4

Density Plot

Color

D
en

si
ty

GMM, with transformation
GMM, without transformation
Wall Texture

Figure 3: Density plot of the color values scaled to fit
[0, 1]. The GMMs had 3 Gaussian components, and were
trained on 7x7 image patches to make the computations
tractable. 512 Gaussian kernels were used for the density
plot.

III. RESTRICTED BOLTZMANN MACHINES

In [2, p. 29], the Restricted Boltzmann Machines
(RBMs) are introduced as energy-based models, with the

energy

Energy(v,h) = −bTv − cTh− hTWv, (8)

where v and h are vectors representing the states of the
visible and hidden nodes, respectively, of the graphical
model. The vectors b and c are the bias parameters. The
parameter W is the interaction matrix, connecting the
visible nodes to the hidden nodes. Assume that the nodes
only take discrete binary values. Then the probability
distribution function would be

P (v,h) =
1

Z
exp(Energy(v,h)), (9)

where Z is a normalization constant, called the partition
function. This construction implies that hi ⊥⊥ hj |V for
i 6= j and vi ⊥⊥ vj |H for i 6= j. See [2, p. 30-32] for a
comprehensive description of the RBMs.

One of the main goals of RBMs is to sample, i.e.
generate visible nodes v using the distribution in equation
(9) marginalized over H. However, this requires that the
parameters b, c,W are known. Let v = m and h = n.
By definition, Z is a sum of exponential functions over
every configuration {v,h}. This leads to an algorithmic
complexity of O(2n+m), which is exponential in the num-
ber of nodes, and therefore makes the model intractable
for anything but small models. Therefore, exact maximum
likelihood learning of the parameters is intractable. Instead

Markov chain Monte Carlo (MCMC) procedures are used
to train the RBMs.

A. Contrastive Divergence

The MCMC procedure called Contrastive Divergence
(CD) has had considerable success, see [2, Section 5.4]
and [3]. The CD procedure relies on Gibbs sampling,
which is described in [1, Section 11.3]. There are some
variants of the CD procedure, but the most common can be
described as follows. Let S = {vl}l be a training data set.
The CD procedure is then an approximation of the gradient
of the log-likelihood using k Gibbs sampling steps. For
each vl, set v(0)

l = vl and sample:

h
(1)
l ∼ P (h|v(0)

l)

v
(1)
l ∼ P (v|h(1)

l)

. . .

h
(k)
l ∼ P (h|v(k−1)

l)

v
(k)
l ∼ P (v|h(k)

l) (10)

The approximated log-likelihood w.r.t. wij , bj and ci is
then given by, respectively:∑

l

(∑
h

p(h|vl)hivj −
∑
h

p(h|v(k)
l)hivj

)
(11)∑

l

vl,j − v(k)l,j (12)∑
l

p(hi = 1|v(0))− p(hi = 1|v(k)) (13)

The parameters are then updated according to a learning
rate η > 0, by using steepest ascent on the approximated
log-likelihood.

One proposed change of the CD procedure is to change
the sampling procedure, in equation (10), into:

h
(1)
l ∼ p(h|v(0)

l)

v
(1)
l = p(v|h(1)

l)

. . .

h
(k)
l ∼ p(h|v(k−1)

l)

v
(k)
l = p(v|h(k)

l) (14)

Except for the first sample, each visible sample is replaced
by the vector of probabilities, from which it before was
sampled. This will effect the values calculated in equation
(11), as we will see later.

B. Empirical Results

To investigate and compare the above proposed CD
procedures, a series of simulations were performed. For
implementation the Shark Library [9] was used in C++ and
its source code modified to fit the altered CD procedure.

The simulations were performed on two problem data
sets. First, on the Bars-And-Stripes problem, where each
sample consists of 4x4 binary units. To generate a sample,
an orientation is first picked, either vertical or horizontal
with equal probability. Then for either each row or column,

0 2000 4000 6000 8000 10000

20
0

25
0

30
0

35
0

Log−likelihood Convergence

Iterations

N
eg

at
iv

e
lo

g−
lik

el
ih

oo
d

CD−1
CD−3
CD−10

0 2000 4000 6000 8000 10000
22

0
26

0
30

0
34

0

Log−likelihood Convergence

Iterations

N
eg

at
iv

e
lo

g−
lik

el
ih

oo
d

Altered CD−1
Altered CD−3
Altered CD−10

Figure 4: The average log-likelihood of RBMs trained us-
ing CD and altered CD on the Bars-And-Stripes problem.
The learning rate used was 0.05.

according to the orientation, a single state is sampled from
a uniform Bernoulli distribution, which is then assigned to
the entire row or column. See also [5]. A lower bound
of the log-likelihood is 102.59. For each simulation a
total 32 samples were generated, which appears to be
sufficient for the RBM to learn a significant part of the
underlying problem structure. An RBM with 8 hidden
units was trained for 10.000 iterations on the data set.
The log-likelihood was recorded at every 500th iteration.
The results in each figure were produced using 100 trials.
The results show the negative log-likelihood.

Simulations were also performed on a second problem,
the Labeled Shifter Ensemble problem. Here each sample
consists of 19 binary units. These were generated as
follows. First, the first 8 units are drawn independently
from a uniform Bernoulli distribution. Then, the states of
the next 8 units are cyclically shifted copies of the first
8 units. The shift is either zero, one unit to the left or
one unit to the right. The last three states are then set
according to the shift used. This data set was generated
deterministically, by loop over each possible combination
and saving it. This yielded 3 · 28 = 768 samples. If the
data is modeled perfectly, the log-likelihood is 5102.43.
See [4]. An RBM with 6 hidden units was trained for 1000
iterations on the data set. The log-likelihood was recorded
at every 200th iteration. The results in each figure were
produced using 100 trials. The results show the negative

0 2000 4000 6000 8000 10000

22
0

26
0

30
0

34
0

Learning Rate Effect

Iterations

N
eg

at
iv

e
lo

g−
lik

el
ih

oo
d

Learning rate: 0.05
Learning rate: 0.01
Learning rate: 0.1

100 150 200 250 300 350 400

0.
00

0.
02

0.
04

Density Plots

Negative log−likelihood

D
en

si
ty

Altered CD−1
Correct CD−1

Figure 5: Top) The average log-likelihood of RBMs
trained using altered CD, with different learning rates, on
the Bars-And-Stripes problem. Bottom) density plots of
RBMs trained using CD and altered CD with learning rate
0.05. 512 Gaussian kernels were used for the density plot.

log-likelihood.
For the Bars-And-Stripes problem, the standard CD

procedure outperforms the altered CD procedure w.r.t. log-
likelihood. The standard CD procedure appears to improve
the log-likelihood more consistently and ends up reaching
a higher point than the altered CD procedure. It further
seems that the log-likelihood of the altered CD starts
to decrease after around 2000 iterations, which indicates
that this method should not be used for training RBMs.
Furthermore, lowering the learning rate appears to worsen
the learning outcome.

For the Labeled Shifter Ensemble problem, the results
appear to be slightly more positive for the altered CD
procedure. Nevertheless. the standard CD procedure still
outperforms the altered CD procedure. For some of the
altered CD procedures, the log-likelihood decreases after
the 200th iteration. A higher number of steps seems to
remove this effect, but instead learns much slower.

C. Discussion

There is no apparent reason to believe that the altered
CD procedure should perform well. Indeed, Gibbs sam-
pling works by using conditional probabilities of the true
distribution to produce new samples. If instead of pro-
ducing actual visible samples, the conditional probabilities
themselves are used, there is no guarantee that the hidden
samples in equation (14) are produced by the true model

0 200 400 600 800 1000

90
00

96
00

Log−likelihood Convergence

Iterations

N
eg

at
iv

e
lo

g−
lik

el
ih

oo
d

CD−1
CD−3
CD−10

0 200 400 600 800 1000

92
00

96
00

10
00

0

Log−likelihood Convergence

Iterations

N
eg

at
iv

e
lo

g−
lik

el
ih

oo
d

Altered CD−1
Altered CD−3
Altered CD−10

Figure 6: The average log-likelihood of RBMs trained
using CD and altered CD on the Labeled Shifter Ensemble
problem. The learning rate used is 2.5.

distribution. For the altered CD procedure it holds that

p(h
(r)
i = 1|v(r−1))

= σ

 m∑
j=1

wijσ

(
n∑

i=1

wijh
(r−1)
i + bi

)
+ cj

 . (15)

All the information provided by h(r−1) is reused in finding
h(r), contrary to the standard CD procedure where only
the state values are passed on. This could create an infor-
mation bottleneck, which would reduce the CD procedures
ability to search the entire configuration space effectively.
A short argument is presented in [3, p. 5]. In general, the
information reuse might lead the samples h(r) and h(r−1)

to be highly correlated, which means that v
(k)
l will be

correlated with h
(1)
l . Therefore, it is likely that the samples

produced by the altered CD procedure are not from the
true model distribution. This is confirmed by the fact that
increased learning rates improve the altered CD procedure
for the Bars-And-Stripes problem. If the procedure was
sampling from the true model distribution, a lower learning
rate should result in a slower, but more stable, learning.
Nevertheless, the samples produced by the altered CD
procedure still reflect some characteristics of the model.
For instance, samples with high probability under the true
model are also likely to have a high probability of being
sampled according to (15). This would explain the partial
success of the method on the Labeled Shifter Ensemble
problem

IV. TRACKING WITH KALMAN AND PARTICLE FILTERS

An important application of probabilistic graphical
models lie in object tracking. Given a sequence of obser-
vations of an object, for example images of an object in
movement, we would like to infer its position recursively.
This is often referred to as estimating the state of the
system. The problem can be defined as finding the max-
imum likelihood solution of a linear dynamical system.
Let x1, . . . ,xt−1 and z1, . . . , zt−1 be vectors representing
the state of the system and the observations at times
1, . . . , t− 1, respectively, then assume:

xt = Axt−1 + wt (16)
zt = Hxt + vt (17)

Here A and H are matrices representing the model pa-
rameters. The vectors wt and vt are random variables
with means zero, which are said to represent the pro-
cess and sensor noise. Given observations z1, . . . , zt, our
objective is then to infer the states x1, . . . ,xt. This can
be done in a number of different ways, with the Kalman
filter being one of the most popular methods. See [6, p.
20] for a comprehensive description. The Kalman filter
assumes that both wt and vt are multivariate normal
distributions, which are independent of each other. This
ensures that the probability distribution factorizes, which
makes the Kalman filter fast to compute. However, for
certain problems the assumption of multivariate normal
distributions is quite false, and therefore the Kalman filter
is ineffective for these. Instead one can use particle filters,
which allows computation of a vast number of probability
distributions. In brief, they work by sampling particles
from the conditional probabilities of p(xt|xt−1), which are
then weighted according to p(zt|xt). They are, however,
approximate methods and can therefore be ineffective
and computationally intractable, for certain problems. The
purpose of this section is to empirically compare the
performance of the Kalman filter with two distinct particle
filters for tracking objects, on the problem of tracking a
single bouncing from video frames in two dimensions. See
[8] for a similar problem.

A. Particle filters

Two particle filters were implemented in MATLAB
[10]. The first was a standard particle filter, using sampling
importance resampling, as described in [7, p. 8]. The
distribution used was the same as defined by the Kalman
filter in a MATLAB implementation, provided by Cristina
Manfredotti. Let x = (x1, x2, x3, x4) be the state of the
ball, representing position (in width and height) and the
velocity (in width and height) respectively. Then

A =


1 0 dt 0
0 1 0 dt
0 0 1 0
0 0 0 1

 ,H =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,

(18)

where dt = 1 is a constant representing the acceleration.
The covariance matrices were assumed isotropic and can

0 10 20 30 40 50 60

0
10

0
20

0
30

0

Filter Performance

Frames

A
ve

ra
ge

 2
−

no
rm

Kalman filter
Stand. PF−10
Stand. PF−50

Mixed PF−10
Mixed PF−50

s
Figure 7: Average 2-norm difference between filtered
position and the observed object position. The graph was
produced using 50 trials for each filter.

be found in the attached software.
The second particle filter was a mixed-state particle

filter, based on the work of [8]. In particular, the iterative
algorithm presented in [8, p. 2] was used, which implied
that the particles sampled for one frame was used in
sampling the particles for the next frame. The ball was
assumed to be in either of two states: 1) in movement,
or 2) bouncing, i.e. in contact with the ground. When the
ball is in movement, the particles are sampled according
to A above. When the ball is bouncing each particle is
sampled according to

A =


1 0 dt 0
0 1 0 dt
0 0 τ 0
0 0 0 τ

 , (19)

where τ ∼ Uniform[0, 1]. Transitions between the two
states were defined such that the ball was in movement
most of the time, and only for a single frame bouncing.
Given a sufficient number of particles, the model construc-
tion with the random variable τ , should allow the ball to
accelerate and deaccelerate, thus capturing the bouncing
effect more effectively.

B. Empirical Results

The the Kalman filter was compared to the two particle
filters, described above, w.r.t. finding the balls observed
position. Since the observation noise is quite low in the
experiment, the closer the filters are to the observed
position of the ball, the better we would expect them to
perform. The particle filters were tested on 50 trials with
10 and 50 particles for each. The 2-norms averaged over
these trials are shown in Figure 7.

The results indicate that the mixed-state particle filter is
significantly better than the standard particle filter, if they
are both given the same number of particles. The standard
particle filter also seems to diverge, i.e. consistently move
away from the ball, at the last few frames if the number of
particles is low. This is not observed for the mixed-state
particle filter.

However, both particle filters are significantly worse
than the Kalman filter at finding the observed ball position.
Because the standard particle filter is an approximation of
the Kalman filter, we would indeed expect it to perform
this way. Furthermore, as the results strongly indicate,
the higher the number of particles, the better the perfor-
mance. This supports the theoretical results for sampling
importance resampling algorithm, see [1, p. 534], which
implies that the particles will converge in distribution to
the true model distribution, as the number of particles go to
infinity. Therefore, taking expectation over these samples,
will converge towards the Kalman filtered state, because
it is defined as the expectation of multivariate normal
distributions. The mixed-state particle filter resembles the
standard particle filter closely, which would explain why
this also performs worse than the Kalman filter, but
improves as the number of particles increase.

V. CONCLUSION

In this paper, a broad range of graphical models were
described and implemented for practical applications. An-
cestral and Markov blanket sampling were first described
from a theoretical viewpoint. Then, Gaussian mixture
models were described, implemented and tested for syn-
thesizing image textures. A method of data transformation
was proposed. The results of these were mixed, and indi-
cated that the Gaussian mixtures have difficulty capturing
patterns with certain coherent structures. Then, Restricted
Boltzmann Machines were presented with the Contrastive
Divergence (CD) training procedure. An altered version
of the learning procedure was suggested and compared
empirically to the original CD. The results indicated that
the altered version performed poorly and that it should
not be used instead of the original procedure. Lastly,
object tracking with a Kalman filter was described. Two
particle filters, a standard and a mixed-state model, were
implemented for tracking a bouncing ball. These were
empirically compared to the Kalman filter. The results
favored the Kalman filter, but indicated that the mixed-
state particle filter was a significant improvement over the
standard particle filter.

REFERENCES

[1] C. M. Bishop, Pattern Recognition And Machine Learning,
1st edition. Springer, 2006.

[2] Y. Bengio, Learning deep architectures for AI, Foundations
and Trends in Machine Learning, 2(1), 2009.

[3] G. E. Hinton, A Practical Guide to Training Restricted
Boltzmann Machines, Department of Computer Science,
University of Toronto, 2010.

[4] G. E. Hinton and T. J. Sejnowski. Learning and relearning in
Boltzmann machines. In D. E. Rumelhart and J. L. McClel-
land, editors, Parallel Distributed Processing: Explorations
in the Microstructure of Cognition, vol. 1: Foundations, p.
282317. MIT Press, 1986.

[5] D. J. C. MacKay. Information Theory, Inference & Learning
Algorithms. Cambridge University Press, 2002.

[6] G. Welch and G. Bishop, An Introduction to the Kalman
Filter, ACM, 2001

[7] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp,
A Tutorial on Particle Filters for OnlineNonlinear/Non-
Gaussian Bayesian Tracking, IEEE TRANSACTIONS ON
SIGNAL PROCESSING, VOL. 50, NO. 2, 2002

[8] M. Isard and A. Blake, A mixed-state condensation tracker
with automatic model-switching, ICCV ’98 Proceedings of
the Sixth International Conference on Computer Vision, p.
107-112, IEEE Computer Society, 1998

[9] C. Igel, T. Glasmachers, and V. Heidrich-Meisner. Shark.
Journal of Ma- chine Learning Research, 9:993996, 2008.

[10] MATLAB 7.12.0 R2011a, The MathWorks Inc., Natick,
Massachusetts, 2011

[11] C. Sanderson, Armadillo: An Open Source C++ Linear
Algebra Library for Fast Prototyping and Computationally
Intensive Experiments. Technical Report, NICTA, 2010.

