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Abstract

The topic of this thesis is learning and inference in Conditional Random
Fields. Conditional Random Fields (CRFs) are introduced and a subset of
these are de�ned as Log-Linear Neighbourhood Models (LN Models). The
analytical properties of the LN Models are investigated, and the models
are connected to the latest literature in Computer Vision. Contrastive Di-
vergence learning is then introduced and analysed in relation to the LN
Models. In particular, properties regarding the convergence and bias of the
Contrastive Divergence are shown based on the results derived for the Re-
stricted Boltzmann Machines. Furthermore Graph Cut methods for exact
polynomial time inference in CRFs are reviewed. The main theorem pre-
sented establishes a class of functions, for which Graph Cut methods are
applicable. From the theorem a subclass of LN Models is established, for
which Graph Cut methods are also applicable. Finally an LN Model for
image denoising is proposed and analysed in regard to the established theo-
retical results. A series of empirical tests are performed on the model. These
are discussed in relation to the theoretical results in the thesis, as well as
in relation to the empirical results obtained for the Restricted Boltzmann
Machines.

Resumé på dansk: Emnet for dette bachelorprojekt er parameter es-
timering og inferens i Conditional Random Fields. Conditional Random
Fields (CRFs) bliver introduceret, og en underklasse af disse bliver de�neret
som Log-Linear Neighbourhood Models (LN Models eller LN Modeller). LN
Modellernes egenskaber bliver undersøgt, og de bliver derefter knyttet til den
seneste litteratur i Computer Vision. Contrastive Divergence learning bliver
introduceret og analyseret med henblik på LN Modellerne. Særligt bliver
konvergens og bias egenskaber for Contrastive Divergence udledt, ved brug
af resultater for Restricted Boltzmann Machines. Derefter bliver Graph Cut
metoder til eksakt inferens i polynomisk tid præsenteret. Hovedteoremet
etablerer en klasse af funktioner, som kan maskimeres ved brug af Graph
Cut methoder. Udfra dette teorem bliver en underklasse af LN Modeller
etableret, hvor Graph Cut metoder kan anvendes. Endelig bliver en LN
Model til billedbehandling fremlagt og implementeret i et software program.
En række empiriske forsøg udføres på denne model. Resultaterne af disse
diskuteres i forhold til den udviklede teori, og til empiriske resultater opnået
for Restricted Boltzmann Machines.
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Chapter 1

Introduction

Conditional Random Fields are statistical models, which have been proposed
to solve a variety of Machine Learning problems, including image segmen-
tation, image denoising, natural language processing and a broad class of
sequential data labeling problems. They have had considerable success in
many of these areas and have, unlike some of their competitors, pleasant
statistical properties, see [27] [18] [15].

However, in many cases Conditional Random Fields are intractable to
compute with respect to both estimation of model parameters and inference.
Because they are intractable the model parameters are often found using ei-
ther approximate or heuristic methods. These methods are largely justi�ed
by their empirical ability to solve a given problem, see [19] [18] [22], but that
leaves both our analytical understanding and our con�dence in replicating
and applying them to new problems in complete darkness. The primary pur-
pose of this thesis is therefore to shed light on the subject using a maximum
likelihood approach.

The second problem posed by Conditional Random Fields is that of infer-
ence. If these models are to be of great practical value inference should be
computationally fast. If we are to entrust these models with solving critical
problems inference needs also to be exact. The secondary purpose of this
thesis will be to present an exact and fast method for performing inference.

I will concentrate on Conditional Random Fields (CRFs) that solve so
called supervised learning problems. These are problems where a priori we
are given a class of models F, usually de�ned by a probability distribution, a
parameter set ω and a training data set {xn,yn}Nn=1. The objective is then
to train the model, i.e. estimate the underlying model parameters λ ∈ ω,
so that it can correctly map an input sample x to its correct output sample
y. In mathematical terms this boils down to �nding a suitable function
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F : Φ → Ω, where xn ∈ Φ yn ∈ Ω, from the class of functions F. A
principled way of �nding F is by using maximum likelihood. This approach
is widely applied in the literature, see for example [27] [15].

I will restrict myself to discrete classi�cation, i.e. where Ω is a discrete
set. This will allow me to build on existing results, such as theorems on the
convergence of Gibbs chains and theoretical articles analysing approximate
learning in the closely related Restricted Boltzmann Machine models. By
restricting myself to the discrete case, I will further be able to present fast
and exact algorithms for inference using the so called Graph Cut methods.
As an important note, and as a secondary motivation, Graph Cut methods
form the building blocks of one of the newest learning methods for CRFs.
Although these learning methods are not maximum likelihood based the
models presented in this thesis should be comparable to the latest research
in learning CRFs.

The thesis is structured as follows. The next chapter will present CRFs
in general. It will de�ne a subset of CRF models, named Log-Linear Neigh-
bourhood Models (LN Models), and investigate the analytical properties of
these. It will further establish important connections between the LN Models
and the latest applied research in Computer Vision image models. The third
chapter will introduce and analyse the highly successful Contrastive Diver-

gence (CD) procedure for the LN Models. Theoretical results are presented
with proofs for the most important ones. Further, a bound on the expected
bias of the CD procedure is derived based on results for the Restricted Boltz-
mann Machines. Throughout the chapter, discussions on the implications of
the results are discussed. The fourth chapter will present the previously
mentioned Graph Cut methods and connect them to the LN Models. The
chapter will further introduce an alternative learning procedure called Max-

Margin learning , which uses Graph Cut methods, and relate this procedure
theoretically to maximum likelihood learning and CD learning. The �fth
chapter will present an empirical investigation of the CD procedure to an
application of image denoising. The results of the investigation are related
to the theoretical results in the preceding chapters and results obtained for
the Restricted Boltzmann Machines. The sixth and �nal chapter will give a
conclusion and some directions for further work.
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Chapter 2

Conditional Random Fields

2.1 De�nitions

To begin understanding the CRF I will start with the de�nition of a
Markov Random Field (MRF).

De�nition 2.1 (Markov Random Field). A Markov Random Field is an

undirected graphical model G = (V,E), where V denotes the set of vertices,

also referred to as nodes, and E the set of edges. Indexed on V is a set of

random variables {Yv}v∈V , with Yv ∈ γ ∀v ∈ V , such that

Yv ⊥⊥ Yu|YN(v) ∀u /∈ N(v) ∪ v, (2.1)

where N(v) is the set of vertices connected to v, de�ned as

N(v)
def
= {u ∈ V | ∃(u, v) ∈ E}. (2.2)

The random variables YN(v) correspond to the set N(v). Let Y ∈ Ω
def
= γ|V |

be the vector of random variables {Yv}v∈V , where γ is any set.

The set N(v) is also refered to as the neighbours of v. Two vertices u and
v are said to be neighbours if and only if u ∈ N(v) and v ∈ N(u). Because
N(v) is de�ned by undirected edges in the graphical model it holds that
u ∈ N(v) if and only if v ∈ N(u).

Inspired by Daphne Koller, Nir Friedman and Hanna M. Wallach, see [15]
and [27], I de�ne a CRF as a MRF with random variables on a discrete space
conditioned upon an arbitrary data vector.

De�nition 2.2 (Conditional Random Field). A Conditional Random Field,

given a vector x = (x1, . . . , xM ) ∈ Φ, is a Markov Random Field such that

the probability density function (pdf) is:

P (y|x,λ) = 1

Z(x,λ)
exp

(
K∑
k=1

Fk(y,x,λ)

)
(2.3)
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The constant Z(x,λ) is a normalization factor often refered to as the par-

tition function. F = (F1, . . . , FK) is a real-valued vector function such that

Fk : Φ × Ω × ω → R for each k ∈ {1, . . . ,K}. The vector λ ∈ ω denotes

the model parameters. The set γ is a �nite set and the sets ω and Φ are any

sets.

Each Fk is called a feature function and the vector function F is called
the vector of feature functions. Typically, each Fk is chosen such that it
expresses some particular feature(s) of the data which should hold for the
random variables {Yv}v∈V . This is done by assigning positively higher values
for more likely con�gurations. If a speci�c Fk only depends on a single Yv,
i.e. changing all other Yu where u ̸= v will not change the value of Fk, it is
further called a state feature function for v. The feature functions are central
to the de�nition of the CRF. They allow us to embed conditioned data into
the model, such that the probability distribution changes with each x. Thus,
the CRF can be seen as an extension of the MRF under certain assumptions.

The conditional independence assumption constrains each Fk. This means
that the Fk's have to be chosen such that for any v, u ∈ V where u ̸= v and
u /∈ N(v) the marginal distributions satisfy

P (yv, yu|x,λ,yN(v)) = P (yv|x,λ,yN(v))P (yu|x,λ,yN(v)). (2.4)

This constraint is analytically messy to work with. Instead one can choose
each Fk such that it only depends on a given node s ∈ V and its neighbours
N(v) ∈ V . This is a notational convenience and does not restrict the general
class of models allowed. Suppose a vector of feature functions F is given
with a set of random variables Y. One can then create a graphical model
as follows. First, create a node for each random variable. Then for each
feature function Fk �nd the set of random variables that are independent of
it, i.e. all v ∈ V such that for any x and yV \v changing yv will not change
the value of Fk. Add edges between all the nodes outside this set. If there
is no edge between two nodes v, u ∈ V , then this will imply that the feature
functions will factorize according to equation (2.4). Thus, any model which
can be speci�ed as a CRF Model can also be speci�ed as a CRF Model
where each feature function depends on a single node and its neighbouring
nodes. Indeed, a large group of CRF models have feature functions that are
naturally formulated in terms of their node connections, which makes their
network structure particularly elegant.

I further choose to introduce the parameters λ linearly into the exponential
function. This will be very convenient from an analytical viewpoint and is
similar to the log-linear CRF Model proposed by Koller and Friedman, see
[15, p. 125].
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De�nition 2.3 (LN Model). Let G = (V,E) be a Conditional Random Field.

Denote for k ∈ {1, . . . ,K} by Fk(y,x, s) the feature function k at node s ∈ V
satisfying

Fk(y,x, s) = Fk(ŷ,x, s) ∀y, ŷ,x, s with yN(s)∪s = ŷN(s)∪s, (2.5)

such that the probability density function is:

P (y|x,λ) = 1

Z(x,λ)
exp

 K∑
k=1

|V |∑
s=1

λkFk(y,x, s)

 (2.6)

As above Z(x,λ) is the partition function. Let γ be a �nite set and Y ∈ Ω :
def
=

γ|V |. The vector λ = (λ1, . . . , λK) ∈ ω ⊆ RK denotes the model parameters.

Let x ∈ Φ ⊆ RM . The real-valued vector function F = (F1, . . . , FK) such

that Fk : Ω× Φ× {1, . . . , |V |} → R for k ∈ {1, . . . ,K}. This is de�ned as a

Conditional Random Field Log-Linear Neighbourhood Model (or shorter an

LN Model). Further the negative of the term in the exponential function of

equation (2.6) is referred to as the energy or the energy function.

Writing out the marginal probabilities for (2.6) and applying some simple al-
gebra one can check that it indeed satis�es equation (2.4) and, therefore, also
equation (2.1). This means we can visualize the independence assumptions
of the model in the graphical representation. If any path between v ∈ V and
u ∈ V passes through a set of nodes C it holds that Yv ⊥⊥ Yu|YC . The re-
striction (2.5) seems natural to many problems, for example image analysis,
where one would expect a single pixel to be related mainly to its neighbour-
ing pixels. It is interesting to note, that the energy function is often regarded
as analogous to a physical system, where states with high energies change
often and therefore have low probabilities.

An Example: I can illuminate the above de�nition with a simple exam-
ple. Suppose we are given some sensory data from a physical system, such as
for example measurements of rainfall and wind speed at di�erent geograph-
ical locations. Our task is then to infer the state of the physical system,
for example whether or not a storm is taking place at a certain location.
Suppose for simplicity that there are only three random variables, {a, b, c},
and that these are highly correlated. Let M be an LN Model with graph
nodes Y = {Ya, Yb, Yc}, where Ya, Yb, Yc ∈ {0, 1}, and conditioned data vec-
tor x = {xa, xb, xc}, where xa, xb, xc ∈ R. Suppose further that all nodes are
connected in the graph and that we have the following two feature functions:

F1(y,x, s) = |xsys| (2.7)

F2(y,x, s) =
∑

s′∈N(s)

|ysys′ | (2.8)
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With λ1, λ2 ≥ 0. This model represents a probability distribution on Y
where a certain random variable Ys is more likely to equal 1 if Xs is large
and if the neighbouring nodes equal 1. For the physical system this would
translate into having a high probability of a storm at Ys if we have observed
storms in nearby locations and if the amount of rainfall and wind speed is
high. According to the the de�nition of the LN Model the pdf is:

P (y|x,λ) = 1

Z(x,λ)
exp

 2∑
k=1

∑
s∈{a,b,c}

λkFk(y,x, s)

 (2.9)

=
1

Z(x,λ)
exp

 ∑
s∈{a,b,c}

λ1|xsys|+ λ2
∑

s′∈N(s)

|ysys′ |

 (2.10)

Figure 2.1: A graphical illustration of an example LN Model. The black
circles represent random variables in the MRF.

As discussed earlier the model changes with xs, yet no probability distri-
bution has to be speci�ed for xs. We only have to state the relationship
between the random variables and the observed data. This makes it easy
to work with complicated or unknown distributions on the conditioned data
and is one of the primary bene�ts of using CRFs. See Wallach [27, p. 2].
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2.2 General Properties

I follow in the initial steps of Wallach, see [27]. Given a training data set
{xn,yn}Nn=1 one can write down the log-likelihood of (2.6) as

L(λ) =
N∑
n=1

 K∑
k=1

|V |∑
s=1

λkFk(y
n,xn, s)− log(Z(xn,λ))

 . (2.11)

By de�nition the partition function can be written as

Z(x,λ) =
∑
y∈Ω

exp

 K∑
k=1

|V |∑
s=1

λkFk(y,x, s)

 . (2.12)

Di�erentiating this w.r.t. λk′ and dropping some indices gives

∂Z(x,λ)

∂λk′
=
∑
y∈Ω

exp

(∑
k

∑
s

λkFk(y,x, s)

)(∑
s

Fk′(y,x, s)

)
. (2.13)

Now di�erentiating the log-likelihood w.r.t. λk′ yields

∂L(λ)

∂λk′
=
∑
n

[∑
s

Fk′(y
n,xn, s)

− 1

Z(xn,λ)

∑
y∈Ω

exp

∑
k,s

λkFk(y,x
n, s)

(∑
s

Fk′(y,x
n, s)

)]

∝ Ep̂

[∑
s

Fk′(y,x, s)

]
− 1

N

∑
n

Ep

[∑
s

Fk′(Y,x
n, s)|xn,λ

]
=
∑
s

Ep̂ [Fk′(Y,x, s)]−
1

N

∑
n

∑
s

Ep [Fk′(Y,x
n, s)|xn,λ] . (2.14)

Where p̂ is the probability under {xn,yn}Nn=1, i.e. the empirical distribution,
and p is the probability of observing {yn}Nn=1 given {xn}Nn=1 and λ, i.e. the
probability distribution of the model. The meaning of this expression is
important. For the maximum likelihood solution the equation will equal
zero, and therefore the feature functions expected value w.r.t. the model are
equal to the expected value w.r.t. to the empirical distribution. This is a
consequence of the log-linear form the probability distribution assumes.
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However, calculating this expression in a naive way will result in an al-
gorithmic complexity of O(N |V ||Ω| +N |V |) = O(N |V ||γ||V | +N |V |). The
factor |Ω| = |γ||V | comes from the summation over every con�guration in the
second term. Now take for example a single image of 32x32 pixels with 16
di�erent states, say intensities of gray, for each pixel. This yields a complex-
ity of 322 · (16)322 + 322 ≈ 101236. By adding a new state to the model the
complexity would have multiplied with a factor 322 = 1024, i.e. the compu-
tation time would have been 1024 times longer. Even worse, by expanding
the image with a single pixel in both width and height the complexity would
have multiplied with a factor 332 · (16)332 − 322 · (16)322 ≈ 1.8 · 101314. Thus,
the computational complexity is exponential in the number of nodes and
polynomial in the number of possible states. Adding more to the problem,
as Wallach [27] notes, often there is no exact analytical solution to the prob-
lem and so iterative search methods (such as gradient ascent) has to be used.
This would mean multiplying the previous complexity with the number of
steps the algorithm requires to give a reasonable solution. In conclusion, the
naive way of calculating the above expression is computationally intractable
for even small models. It should, however, be noted that for certain graph
structures the equation factorizes and can be calculated much faster. Wal-
lach [27] gives an example of a chain graph with this property. From this
point on, I shall assume that the graph does not factorize.

Despite its computational complexity, the LN Model still reveals some in-
teresting statistical properties. From its log-linear form I will be able to show
that the log-likelihood function is concave. This is a very important obser-
vation, because it implies that any local optimum is also a global optimum.
To show that the log-likelihood is a concave function w.r.t λ is equivalent
to showing that the Hessian matrix of L(λ) is negative semide�nite. Ac-
cording to equation (2.14) this is true if the Hessian matrix of the negative
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log-partition function is negative semide�nite, which it is:

−∂
2 log(Z(x,λ))

∂λk′∂λk′′

=
1

Z(x,λ)

[
1

Z(x,λ)

∑
y∈Ω

exp

∑
k,s

λkFk(y,x, s)

(∑
s

Fk′(y,x, s)

)

exp

∑
k,s

λkFk(y,x, s)

(∑
s

Fk′′(y,x, s)

)
−

∑
y∈Ω

exp

∑
k,s

λkFk(y,x, s)

(∑
s

Fk′(y,x, s)

)(∑
s

Fk′′(y,x, s)

)]

= Ep

[∑
s

Fk′(Y,x, s)

]
Ep

[∑
s

Fk′′(Y,x, s)

]

− Ep

[(∑
s

Fk′(Y,x, s)

)(∑
s

Fk′′(Y,x, s)

)]

= −Covp

(∑
s

Fk′(Y,x, s),
∑
s

Fk′′(Y,x, s)

)
. (2.15)

This yields the negative of the covariance matrix w.r.t. the random vari-
ables

∑
s Fk(Y,x, s), k = 1, . . . ,K, which is negative semide�nite. Thus,

maximum likelihood estimation is a convex optimization problem for the LN
Model.

Another important observation is that the LN Model is an exponential
family for �xed x and �xed feature functions. It can be written in the form
of the following pdf

f(y) =
1

c(λ)
exp(λT t(y)) y ∈ Ω,λ ∈ ω, (2.16)

where

c(λ)
def
= Z(λ,x), (2.17)

t(y)
def
=

(∑
s

F1(y,x, s), . . . ,
∑
s

FK(y,x, s)

)T
. (2.18)

This can also be used to derive the concavity of the log-likelihood by using
the positive-semide�nite covariance matrix of an exponential family, which
is given by

Var [t(Y)] = D2
λ log c(λ). (2.19)

See for example Nielsen [21, p. 26] for a derivation.
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2.3 Generalization to Image Models in

Computer Vision

I have now established the LN Model as a subset of the CRF Model. To
justify it I will relate it to the latest image models in the Computer Vision
literature. First, I will start with a de�nition of a submodel. This will allow
me to present other models as submodels of the LN Model.

De�nition 2.4. For two statistical models M1 and M2 with respective prob-

ability density functions P1 : Ω×Φ×ω1 → [0, 1] and P2 : Ω×Φ×ω2 → [0, 1],
M1 is a submodel of M2 if

∀λ1 ∈ ω1 ∃λ2 ∈ ω2 : P1(y|x,λ1) = P2(y|x,λ2) ∀y ∈ Ω,x ∈ Φ, (2.20)

where Ω is a �nite set and Φ, ω1 and ω2 are any sets. The vectors λ1 and λ2

are the respective model parameters, and Y is the vector of random variables.

Lemma 2.5. For two Conditional Random FieldsM1 andM2 with respective

probability density functions P1 : Ω×Φ×ω1 → [0, 1] and P2 : Ω×Φ×ω2 →
[0, 1], M1 is a submodel of M2 if and only if

∀λ1 ∈ ω1 ∃λ2 ∈ ω2 :

K1∑
k

F 1
k (y,x,λ1) =

K2∑
k

F 2
k (y,x,λ2) ∀y ∈ Ω,x ∈ Φ,

(2.21)

where

P1(y|x,λ1) =
1

Z1(x,λ1)
exp

(
K1∑
k

F 1
k (y,x,λ1)

)
, (2.22)

P2(y|x,λ2) =
1

Z2(x,λ2)
exp

(
K2∑
k

F 2
k (y,x,λ2)

)
. (2.23)

The sets Ω,Φ, ω1, ω2 and vectors λ1,λ2,Y are de�ned as above.

Proof. By de�nition of the partition function (2.21) is equivalent to (2.20).

In other words when showing that one CRF Model is a submodel of another
one only has to consider the energy functions, i.e. the terms in the exponential
function of the pdf. With this observation I am ready to generalize the LN
Model to other CRF models in the literature.
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Binary Image Denoising: The LN Model is closely related to the CRF
Model proposed by Korc and Forstner [18]. Their model has been acclaimed
of having state-of-the-art performance in image denoising and considerable
success in image labeling.

De�nition 2.6. The CRF Model presented by Korc and Forstner is de�ned

by the probability density function

P (y|x) = 1

Z(x)
exp

∑
s∈V

A(ys,x) +
∑
s∈V

∑
s′∈N(s)

I(ys, ys′ ,x)

 . (2.24)

Here x ∈ Φ de�nes a vector of pixel intensities, for example the brightness

component of the pixel. As before Z(x) is the partition function. The set

of nodes on the graph is V , where each node represents a pixel position,

with corresponding pixel intensity xs, such that ys ∈ {−1, 1} ∀s ∈ V . Let

A : {−1, 1} × Φ→ R be the unary association potential function, depending

only on the state ys and xs. Let I : {−1, 1}2 × Φ → R be the pairwise

interaction potential function based on the two states s and s′. The potential
functions are speci�ed as

A(ys,x) =σ(ysw
Ths(x)) (2.25)

I(ys, ys′ ,x) =ysys′v
Tµss′(x), (2.26)

where σ is the non-linear sigmoid function

σ(t) =
1

1 + exp(−t)
. (2.27)

Here hs and µss′ are real-valued vector functions such that high values cor-

respond to ys = 1 and ysys′ = 1. The vectors w ∈ RK1 ,v ∈ RK2 are the

model parameters, where K1 and K2 are the dimensions of vector functions

hs and µss′. In particular, for the state-of-the-art model hs = [1, xs] and
µss′ = [1, |xs − xs′ |].
In the pdf of the LN Model the parameters are multiplied with the feature
functions in the energy function. This makes the LN Model an exponential
family. In Korc and Forstner's CRF Model the parameters weighting each
A are non-linear in a sum of the input variables. So how can it be rewritten
into an LN Model? In the discrete case, when xs ∈ {1, . . . , C} ∀s ∈ V , one
can de�ne their model as a subset of the LN Model by appropriate choice of
F. One way to do it is through the indicator functions:

F1(y,x, s) = 1− ys
F2(y,x, s) = ys1{x=1}(xs)

. . .

FC+1(y,x, s) = ys1{x=C}(xs)

. . .
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For any choice of w one can choose:

λ1 = σ(0)

λ2 = σ(wThs(1)))

. . .

λC+1 = σ(wThs(C)).

It then follows that

C+1∑
k=1

λkFk(y,x, s) = σ(ysw
Ths(x)).

The pdfs are therefore identical, which means that their model is a submodel
of the LN Model.

In the continuous case, when x ∈ Φ and Φ is an in�nite set, the non-
linearity that Korc and Forstner's presents can never generally be captured
by the LNModel. One way to show this is by observing that both their model
and the LN Model are C∞ functions. If Korc and Forstner's CRF Model is a
submodel of the LN Model, according to Lemma 2.5, their derivatives for the
energy functions should be equivalent for a certain set of parameters for the
LN Model. Di�erentiating the energy function in the exponential function
of the LN Model w.r.t. to a λk will always yield an expression without λk,
while di�erentiating the sigmoid function will always yield a result dependent
on λk. So in the continuous case Korc and Forstner's CRF Model is not a
submodel of the LN Model.

A simple solution would be to consider a discretization of Φ, but this could
lead to an enormous size of λ, which would require an even greater number
of training samples for e�ective estimation. Another option is to approxi-
mate their sigmoid function by a set of more general functions. One could
approximate A by Taylor expanding the sigmoid function and specifying a
new function Fk for each term in the expansion. Consider the particular
case hs = [1, xs]. If ys = 0 then A(ys,x) = σ(ysw

Ths(x)) = σ(0). If ys = 1
Taylor expanding σ(w1 + w2x) to the second order at w1 + w2x = 0 yields

1

2
+
w1 + w2x

4
− (w1 + w2x)

3

48

=
1

2
+
w1

4
+
w2x

4
− 1

48

(
w3
1 + 3w3

1w2x+ 3w1w
2
2x

2 + w3
2x

3
)
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Observe that all the terms involving x can be written as a constant times x
to the power of some positive integer. Select now the following F:

F1(y,x, s) = 1

F2(y,x, s) = ys

F3(y,x, s) = ysxs

F4(y,x, s) = ysx
2
s

F5(y,x, s) = ysx
3
s

. . .

As before, for any choice of w, one can choose λ so that the approximated
Taylor expansion of their model is identical to the probability density func-
tion in the LN Model. This provides a method to approximate Korc and
Forstner's model arbitrarily well. Using this approach one can indeed ap-
proximate any feature function to an arbitrary precision as long as the Taylor
expansion does converge. For Korc and Forstner's model this approach is
feasible in the continuous case. However, since the dimensionality of λ grows
with the accuracy of the approximation, applying the above procedure be-
comes infeasible for larger models. Although it could be argued that even a
limited approximation will contain enough complexity to capture the under-
lying model distribution.

Image Segmentation: An important and very promising application of
CRF Models lies in image segmentation. Nowozin et al. [22] present a tree
structured CRF Model for classifying objects. They use a segmentation
method named ultrametric contour maps (UCM). Given an image it is �rst
preprocessed by the UCM method, which will partition the image into co-
herent regions in a tree-structured hierarchical system. This procedure is
carried out such that each child region is subset of its parent region, and
such that joining all the regions, in each layer of the hierarchical system,
will give back the complete image. The procedure is speci�ed by an a priori
granularity parameter, the so called pruning edge strength, which adjusts the
number of child regions at the lowest layer in the hierarchical system.
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Figure 2.2: A Tree-Structured CRF using the UCM segmentation. The black
circles represent random variables in the MRF.

After this process they apply a CRF Model where each region is a random
variable taking values in a set of objects {1, . . . , C}. The indices of each
object represent a speci�c category, such as for example background, person
and bottle. Each region is neighbour to both its parent region and its child
regions as de�ned in the hierarchy by the UCM method. Illustration 2.2
shows the model structure. The interactions between nodes are then de�ned
by two types of feature functions. First, the unary observation factors, which
are state feature functions, i.e. they depend only on a single hidden random
variable Ys. They de�ne as many as 3560 such features functions to represent
textural and geometrical features of the data set. For details on these refer
to Nowozin et al. [22]. Second, they de�ne the data-independent pairwise

factors, which are independent of the observed data. They are de�ned as
�xed energy values for child-parent con�gurations. For a single image their
model is equivalent to an LN Model with the following pdf

P (y|x,λ) = 1

Z(x,λ)
exp

(∑
s

3560∑
k=1

λU,kxs,k

+
∑
s

∑
s′∈N(s)

(
λT,ys,ys′H(s, s′) + λT,ys′ ,ysH(s′, s)

))
. (2.28)

Here:

H(s, s′) =

{
1 if s is parent to s′

0 otherwise
(2.29)

The model parameters consists of the vector λU , with 3560 entries, and the
C × C matrix λT . The matrix λT represents a table of energy values for
child-parent node pairs, i.e. how likely a certain child-parent con�guration is.
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It can easily be turned into vector form to �t the de�nition of the LN Model.
The data x is a matrix of size |Y| × 3560 with entries determined in the
preprocessing stage, as described earlier. Extending the model to multiple
images requires an important modi�cation. The LN Model is speci�ed by
a �xed neighbourhood structure, but the model proposed by Nowozin et al.

changes the neighbourhood structure with each input image according to the
UCMmethod. The trick is then to concatenate a number of "arti�cial" nodes
to every image preprocessed by the UCM method, so that all images have the
exact same nodes and neighbourhood structure. Once this is done, one can
then change equation (2.28), such that any feature function on an "arti�cial"
node always takes the value zero. Let D denote the set of "arti�cial" nodes.
One can write the pdf as

P (y|x,λ) = 1

Z(x,λ)
exp

(∑
s

3560∑
k=1

λU,kxs,k1{x/∈D}(s)

+
∑
s

∑
s′∈N(s)

(
λT,ys,ys′1{x=obj1∧y=obj2}(ys, ys′)H(s, s′)1{x/∈D}(s)

+ λT,ys′ ,ys1{x=obj1∧y=obj2}(ys′ , ys)H(s′, s)1{x/∈D}(s)
))

(2.30)

After processing the model one can recursively set ys = ys′ for all s ∈ D
where s′ is parent to s. This shows that the model proposed by Nowozin et

al. can be de�ned as an LN Model with a �xed neighbourhood structure.

It should be noted that computations on their model, both both w.r.t.
parameter estimation and inference, is fast and exact. However, because of
the size of the model (i.e. the excessive number of feature functions, random
variables and training images) it is only computationally tractable under the
tree-structured hierarchical system, which ensures that the pdf factorizes. If
one were to expand the model, for example by adding dependencies among
adjacent image regions, exact computation in the model would become in-
tractable. This makes the learning and inference methods presented in this
thesis highly relevant to such models. There are two reasons for this. First,
they will allow more complex models to fully capture the relevant dependen-
cies. Second, they will accelerate the computations, both w.r.t. to learning
and inference, which could open up for real-time applications.
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The model presented by Nowozin et al. [22] cannot be regarded as a
state-of-the-art model with regard to performance. However, the associa-

tive hierarchical model presented by Ladicky et al. [20] has been acclaimed
state-of-the-art performance. Their model is an extension into a hierarchical
neighbourhood system of a model proposed by Kohli, Ladicky and Torr in
[14]. For the continuous case the model of Kohli et al. cannot be written
down in the form of a LN Model, for similar reasons as stated earlier in re-
gard to Korc and Forstner [18]. See [14, Equations (7), (10) and (12)] for the
non-linear combination of parameters in the energy function. Nevertheless,
their model can be approximated arbitrarily well as a submodel of a more
general LN Model, due to the general form of the pdf, for the same reasons
as described earlier. Furthermore, since the non-linear interactions between
weight parameters involve only a small number of weights, in most cases less
than 3 weights, the approximations should be very e�ective and accurate
for even small datasets. Turning back to the CRF Model of Ladicky et al. ,
which is an extension of Kohli, Ladicky and Torr with the same pdf, it is also
possible to approximate this arbitrarily well. Similar to Nowozin et al. , for
a single �xed image their model also has a �xed neighbourhood structure.
Therefore, by transforming the model using "arti�cial" nodes and then ap-
plying a Taylor expansion, it should be possible to approximate their model
e�ectively. Thus, the LN Model appears to be a good candidate for e�ec-
tively replicating a variety of state-of-the-art models in image segmentation,
while still adhering to a number of preferential statistical properties.

I have now provided a general framework of three di�erent methods for
transforming and approximating other CRF Models:

1. Generalization through indicator functions.

2. Approximation through Taylor expansion.

3. Model transformation through "arti�cial" nodes.

These methods should allow a vast body of CRF models to be rede�ned as LN
Models. Additionally, the widely applied natural language processing models
proposed by Wallach [27] and Koller and Friedman [15, p. 145] are, from their
de�nitions, submodels of the LNModel. Consequently, the theoretical results
I show for the LN Model are highly relevant to state-of-the-art development
in the areas of image denoising, image segmentation and natural language
processing.
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Chapter 3

Contrastive Divergence Learning

3.1 De�nitions

Given the intractable derivative of the log-likelihood, it would seem natural
to search for an approximation of the gradient and particularly the derivative
of the partition function. One such approximation is the Markov Chain
Monte Carlo based method called Contrastive Divergence(CD). A short and
clear description of CD can be found in the textbook of Hastie, Tibshirani
and Friedman [12]. This method is widely applied in training the MRF
models named Restricted Boltzmann Machines and has had considerable
success. See the work of Hinton [13]. The general idea of CD is to run a
number of Gibbs chains for each training sample (xn,yn) to approximate the
last term of equation (2.14). Although the Gibbs chain will be far away from
the actual expression, for su�ciently many steps, the sample will e�ectively
give the correct sign of the gradient w.r.t. each λk, which is enough to train
the LN Model. I will start with a de�nition of the Gibbs sampler from
Bremaud [6, Chapter 7, p. 287].

De�nition 3.1 (The Gibbs Sampler). For x ∈ Φ, let M be a CRF Model

G = (V,E) with probability distribution, i.e. probability density function, π.
The Gibbs sampler is the homogeneous discrete time Markov chain over the

space Ω, with initial starting point y1, produced by the following transition

probabilities. For each step l, according to a probability distribution Z on

V , the chain picks a node s ∈ V to update, and then uses the following

conditional probability to update the con�guration

P (Yl+1 = y|Yl = ŷ) = zsπ(ys|ŷV \s)1{yV \s=ŷV \s}, (3.1)

where zs > 0 ∀s ∈ V . This is synonymously called a Gibbs chain. After a

prede�ned number of steps L, the current con�guration yL is de�ned to be a

sample from the Gibbs chain. This is called a Gibbs sample.

One can also choose to update the nodes periodically.
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De�nition 3.2 (The Periodic Gibbs Sampler). For x ∈ Φ, let M be a CRF

Model G = (V,E) with probability distribution π. The periodic Gibbs sampler
is the homogeneous discrete time Markov chain over the space Ω, with initial
starting point y1, produced by the following transition probabilities. Let q :
{1, . . . , |V |} → V be a bijective function. For each step l, the chain picks a

node s ∈ V as the next node in the sequence q(1), . . . , q(|V |), q(1), . . . , where
l = 1 is the �rst element of the sequence. The con�guration yl+1 is then

changed according to the following conditional probability:

P (Yl+1 = y|Yl = ŷ) = π(ys|ŷV \s)1{yV \s=ŷV \s} (3.2)

After a prede�ned number of steps L, where L is a multiplum of |V |, the
current con�guration yL is de�ned to be a sample from the Gibbs chain.

The �nite sequence q(1), . . . , q(|V |) is called the update order of the Gibbs

sampler.

In the above de�nition updating the nodes q(1), . . . , q(|V |) corresponds to a
jump in the Markov chain. Therefore, when referring to a step l in the Gibbs
chain, I will take it to mean updating the nodes q(1), . . . , q(|V |) in total l
times in correct order. Note that the update order is synonymously refered
to as a scanning policy in the literature.

The Gibbs sampler has some very nice theoretical properties. These also
hold for the periodic Gibbs sampler. As Bremaud shows in [6, p. 286]
convergence is guaranteed to the unique stationary distribution π, i.e. the
distribution of the CRF Model, as L → ∞, if only every possible state of
each node s ∈ V has a strictly positive probability under any data set. From
equation (2.3) this holds. This is, indeed, a motivating result for the CD
procedure.

De�nition 3.3 (L-Steps R-Samples Contrastive Divergence Learning). Let
M be an LN Model with training data set {xn,yn}Nn=1. Let λ be initial-

ized from an arbitrary distribution. The derivative of the log-likelihood with

respect to λk, equation (2.14), is then approximated by:∑
s

Ep̂ [Fk(y,x, s)]−
1

N

1

R

∑
n

∑
r

∑
s

Fk(y
n
L,r,x

n, s) (3.3)

Here p̂ is de�ned as in (2.14). For each r ∈ {1, . . . , R} and n ∈ {1, . . . , N},
calculate ynL,r by �rst initializing to a point y1 using either 1) the respective

sample yn or 2) a discrete uniform distribution on Ω. Then, use a periodic

Gibbs sampler to sample yn1,r → · · · → ynL,r. After the sampling, estimate

the λk's with learning parameter η > 0 using

λt+1
k = λtk + η

(∑
s

Ep̂ [Fk(y,x, s)]−
1

N

1

R

∑
n

∑
r

∑
s

Fk(y
n
L,r,x

n, s)

)
,

(3.4)
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where λt de�nes the parameters of the LN Model at iteration t. This process
is repeated iteratively until a maximum number of iterations is reached, or

the absolute change in the parameters are su�ciently small w.r.t. a given

ϵ > 0 using

|λt+1
k − λtk| < ϵ ∀k ∈ {1, . . . ,K}. (3.5)

Lemma 3.4. For the L-Steps R-Samples Contrastive Divergence Learning

procedure each Gibbs chain loops through every node in a prede�ned order,

and chooses a new state for the corresponding random variable by the follow-

ing conditional pdf, for a given state s′, point y and sample x:

P (ys′ |yV \s′ ,x,λ) =
exp (

∑
k λkFk(s

′,y,x))∑
ŷ,∀s ̸=s′:ŷs=ys exp (

∑
k λkFk(s

′, ŷ,x))
(3.6)

Proof. The proof follows from writing out the probability in equation (3.2)
according to equation (2.6).

Let τ be a prede�ned maximum number of iterations. For each training
sample the procedure runs R Gibbs chains for L Gibbs iterations and then
sums over both the empirical distribution and the Gibbs samples w.r.t. the
feature functions. This bounds the algorithmic complexity by O(τNRL|V |+
2N |V |). So the calculation cost does not grow exponentially anymore. Fur-
thermore, if L→∞ and R→∞ the Ergodic Theorem in [6, p. 111] ensures
almost-surely convergence in expectation, i.e. that the average of the CD
samples in equation (3.3) converges almost-surely to the last term in equation
(2.14).

However, there is a notable di�erence between the CD procedure for the
LN Model and for the Restricted Boltzmann Machines. In the last CD step
for the Restricted Boltzmann Machines, the expected value is taken over
the last term in equation (3.3) for the hidden units given the visible units.
See Hinton [13] for a description of the Restricted Boltzmann Machines and
the reasoning behind taking expectation. As communicated by Asja Fischer,
this corresponds to taking expectation over the feature function of the last
updated node s, given all the other nodes. For CRF Models with a large
number of nodes this step is useless, in part because one is taking expectation
over just a single node and in part because the dependency structure is very
likely to make a single state extremely probable and all others much less
probable, conditioned on the neighbouring nodes. The Binary LN Model,
discussed in the �fth chapter for image denoising, is a good example of this.
For large images, the majority of pixels will be surrounded by neighbours
with the same states. Changing a single node within such an area of the
image, for example changing a node to the state 'white' when all of its
neighbours are 'black', will often lead to a very low probability. Thus, for a
large number of models this last step has little e�ect and can be omitted.
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The initialization of the Gibbs samplers in the CD procedure is impor-
tant. It seems best to start the Gibbs samplers using the respective samples
(yn)Nn=1 already given. This would in fact mean the CD procedure is trying
to minimize the expected di�erence under the empirical distribution, p̂, and
another distribution situated somewhere between the empirical distribution
and the model distribution. As L increases this other distribution converges
to the model distribution as described before. However, since the Gibbs sam-
pler is started at a given training sample, which is the very same sample the
model is supposed to maximize the likelihood over, the procedure is biased
towards believing that the model, with its current parameters λ, is much
better than it actually is. This will likely result in the absolute value of the
gradient being underestimated. At �rst sight, the bias e�ects the gradient
in absolute terms only and not the direction of the learning. By appropriate
choice of η, this bias should not pose a problem. However, a more serious
bias can appear when the model becomes deterministic. Once the model has
become close to deterministic, i.e. it will rarely change any node states at all
because that would induce a huge reduction in the energy function, starting
the model at a given training sample will pose a serious problem. The Gibbs
sampler would then need many more steps to sample other con�gurations.
As a way of coping with this problem, I introduced a second initialization
method into the de�nition of CD, where the y0 is initialized from a uniform
distribution on Ω. Alternatively one could also use a procedure which alter-
nates between the two initialization methods to harvest both the bene�t of
fast convergence to the stationary distribution and, at least to some extend,
avoid the potential bias. I will show later, that the second initialization
method yields an upper bound on the expected bias of the approximation,
which is determinable a priori to training the model.

There exists an interesting variant of the Contrastive Divergence proce-
dure called Persistent Contrastive Divergence (Persistent CD) which uses a
di�erent initialization method for the Gibbs samplers.

De�nition 3.5 (L-Steps R-Samples Persistent CD Learning). Let M be an

LN Model with training data set {xn,yn}Nn=1. Let t be the current iteration

of the algorithm. For t = 1, perform learning as Contrastive Divergence in

De�nition 3.3. When t > 1, for each r ∈ {1, . . . , R} and n ∈ {1, . . . , N},
initialize the Gibbs chain to the previous ynL,r and continue the procedure

as in De�nition 3.3. The procedure is repeated until a maximum number of

iterations is reached or the changes in the parameters are su�ciently small

as in De�nition 3.3.

Despite the nice statistical properties discussed so far, Gibbs sampling
can be drastically slow at converging in expectation. It is therefore of great
practical interest to try to evaluate how fast the Gibbs sampling will converge
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in expectation. This will be my next step toward understanding the LN
Model with CD. To do this, I will �rst need some probability theory for the
Gibbs sampler.

3.2 Properties of The Gibbs Sampler

I will need the next two results for calculating the expected bias of the CD
procedure in the coming section. The following theorem is given in Bremaud
[6, Chapter 6, p. 237].

Theorem 3.6. Let P be a stochastic matrix on E × E where E is a �nite

set. Let µ and v be two probability distributions on E. Then for l ∈ N

dv(µ
TP l,vTP l) ≤ dv(µ,v)δ(P)l. (3.7)

Here δ(P ) is Dobrushin's ergodic coe�cient de�ned by

δ(P) = sup
i,j∈E

dv(pi,pj), (3.8)

where pi is the i'th row in P. The variational distance dv is then de�ned for

probability distributions α and β on E as

dv(α,β) =
1

2
|α− β| = 1

2

∑
k∈E
|αk − βk| (3.9)

Bremaud [6, Chapter 6 p. 236] also presents the next lemma.

Lemma 3.7. For a stochastic matrix P on E × E where E is a �nite set

δ(P) = 1− inf
i,j∈E

∑
k∈E

min(pik, pjk) ≤ 1 (3.10)

Before I dive into the statistical properties of the CD procedure, I shall
need yet another result from Bremaud. Bremaud [6, Chapter 6 p. 289] gives
a proof showing that the variational distance between the Gibbs sampler's
distribution and its stationary distribution decreases monotonically. The
theorem and proof is given below.

Theorem 3.8 (Gibbs Sampler Monotonicity). Suppose M is an LN Model

trained by the Contrastive Divergence procedure, using a periodic Gibbs sam-

pler with arbitrary initial distribution µ over Ω. Let π be the stationary

distribution of the Gibbs sampler. Let vs be the probability distribution of

the Gibbs chain after a single update at some node s ∈ V . Then:

dv(vs,π) ≤ dv(µ,π). (3.11)
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Let q(1), . . . , q(|V |) be the update order of the Gibbs sampler, where
q : {1, . . . , |V |} → V is a bijective function. Denote by vq(i) the probability

distribution of the Gibbs sampler after updating nodes q(1), . . . , q(i). Then:

dv(vq(|V |),π) ≤ dv(µ,π), (3.12)

Proof. By de�nition of the Gibbs sampler:

vs(y) = π(ys|yV \s)µ(yV \s) (3.13)

Using this observation one can derive:

dv(vs,π) =
1

2

∑
y∈Ω
|π(ys|yV \s)µ(yV \s)− π(y)|

=
1

2

∑
y∈Ω
|π(ys|yV \s)µ(yV \s)− π(ys|yV \s)π(yV \s)|

=
1

2

∑
y∈Ω
|π(ys|yV \s)

(
µ(yV \s)− π(yV \s)

)
|

=
1

2

∑
yV \s

∑
ys

π(ys|yV \s)|µ(yV \s)− π(yV \s)|

=
1

2

∑
yV \s

|µ(yV \s)− π(yV \s)|

=
1

2

∑
yV \s

|
∑
ys

(µ(y)− π(y)) | ≤ 1

2

∑
y∈Ω
|µ(y)− π(y)| (3.14)

Applying the previous result recursively one obtains:

dv(vq(|V |),π) ≤ dv(vq(|V |−1),π) · · · ≤ dv(vq(1),π) ≤ dv(µ,π). (3.15)

Corollary 3.9. SupposeM is an LN Model trained by either the Contrastive

Divergence or the Persistent Contrastive Divergence procedure. Let P be the

transition matrix of the Gibbs samplers at iteration t. If L ≥ L1 > L2, then

the following holds for all steps:

dv(vPL1 ,π) ≤ dv(vPL2 ,π) (3.16)

Proof. Follows directly from Theorem 3.8.

Using some mathematical analysis, I can derive the following lemma for the
update order of the periodic Gibbs sampler.
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Lemma 3.10. Suppose M is an LN Model trained by the Contrastive Diver-

gence procedure using a periodic Gibbs sampler, with arbitrary initial distri-

bution µ over Ω. Let π be the stationary distribution of the Gibbs sampler.

Then, the update orders with lowest obtainable variational distance satisfy

argmin
q

∑
y∈Ω
|π(yq(|V |))|yV \q(|V |))

∑
ȳq(|V |)

π(yq(|V |−1)|yV \{q(|V |−1),q(|V |)}, ȳq(|V |))∑
ȳq(|V |−1)

· · ·
∑
ȳq(2)

π(yq(1)|ȳV \q(1))(µ(ȳV \q(1))− π(ȳV \q(1)))|,

(3.17)

where q(1), . . . , q(|V |) is the update order of the Gibbs sampler and
q : {1, . . . , |V |} → V is a bijective function.

Proof. Let vq(i) be the probability distribution of the Gibbs chain after up-
dating nodes q(1), . . . , q(i). One can derive

vq(1)(y) = π(yq(1)|yV \q(1))µ(yV \q(1))

vq(2)(y) = π(yq(2)|yV \q(2))∑
ȳq(2)

π(yq(1)|yV \{q(1),q(2)}, ȳq(2))µ(yV \{q(1),q(2)}, ȳq(2))

. . .

vq(|V |)(y) = π(yq(|V |))|yV \q(|V |))
∑
ȳq(|V |)

π(yq(|V |−1)|yV \{q(|V |−1),q(|V |)}, ȳq(|V |))∑
ȳq(|V |−1)

· · ·
∑
ȳq(2)

π(yq(1)|ȳV \q(1))µ(ȳV \q(1)) (3.18)

Write µ(ȳV \q(1)) = π(ȳV \q(1))+ δȳ. Using that π is the stationary distribu-
tion derive

vq(|V |)(y) = π(yq(|V |))|yV \q(|V |))
∑
ȳq(|V |)

π(yq(|V |−1)|yV \{q(|V |−1),q(|V |)}, ȳq(|V |))∑
ȳq(|V |−1)

· · ·
∑
ȳq(2)

π(yq(1)|ȳV \q(1))(π(ȳV \q(1)) + δȳ)

= π(yq(|V |))|yV \q(|V |))
∑
ȳq(|V |)

π(yq(|V |−1)|yV \{q(|V |−1),q(|V |)}, ȳq(|V |))∑
ȳq(|V |−1)

· · ·
∑
ȳq(2)

π(yq(1)|ȳV \q(1)) · δȳ + π(y)

= π(yq(|V |))|yV \q(|V |))
∑
ȳq(|V |)

π(yq(|V |−1)|yV \{q(|V |−1),q(|V |)}, ȳq(|V |))∑
ȳq(|V |−1)

· · ·
∑
ȳq(2)

π(yq(1)|ȳV \q(1)) (µ(ȳV \q(1))− π(ȳV \q(1)))

+ π(y) (3.19)
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Writing this into dv(vq(|V |),π) and taking minimum over q �nishes the proof.

While the lemma does not provide a divine insight into picking the update
order of the Gibbs sampler, it does provide a reasonable idea. From the last
product term in the equation, the variational distance is likely to be small
when the chain is �rst updated at the node where µ and π are believed to
disagree the most. This also makes intuitive sense, since then initialized value
of this random variable will never be used. Applying the idea recursively,
the second node to update using the Gibbs chain should be the node where
µ and π are believed to disagree the second most, and so on.

I will now use Lemma 3.7 and Bremaud [6, Chapter 7, Example 6.5] for
the following theorem, which shall become very useful in the next section.

Theorem 3.11. Suppose M is an LN Model trained by the Contrastive Di-

vergence procedure using a periodic Gibbs sampler, with arbitrary initial dis-

tribution µ over Ω. Let π be the stationary distribution of the Gibbs sampler.

Let P be the stochastic matrix of the Gibbs chain. Then, for step l ∈ N of

the Gibbs sampler,

|µP l − π| ≤ 1

2
|µ− π|(1− e−|V |∆)l, (3.20)

where:

∆ = max
s′∈V

δs′ (3.21)

δs′ =max
ŷ,y̌

{∣∣∣∣∣∑
k

∑
s

λkFk(ŷ,x, s)−
∑
k

∑
s

λkFk(y̌,x, s)

∣∣∣∣∣∣∣ŷV \s′ = y̌V \s′

}
(3.22)

Proof. Use Theorem 3.6 and that π is the stationary distribution to obtain:

|µP l − πP l| = |µP l − π| ≤ 1

2
|µ− π|δ(P)l (3.23)

Denote by pŷy̌ the entrance in P, such that it is the probability that the
Gibbs sampler will change from con�guration ŷ to y̌ after updating all the
nodes s ∈ V . From Lemma 3.7 above one can bound δ(P) with:

δ(P) = 1−min
ŷ,y̌

∑
y∈Ω

min(pŷy, py̌y) ≤ 1− |γ||V |(min
ŷ,y̌

py̌ŷ). (3.24)

Now set:

ms(y)
def
= max

ŷ

∑
k,s

λkFk(ŷ,x, s)
∣∣ŷV \s = yV \s

 . (3.25)
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Let ps
′
ŷy̌ be the probability that the Gibbs sampler will change from con�g-

uration ŷ to y̌ when updating node s′. When updating node s′ the Gibbs
sampler will only change the value of ys′ and therefore ps

′
ŷy̌ will equal equation

(3.6) for yV \s′ = ŷV \s′ and otherwise zero. From this one can derive:

ps
′
ŷy̌ =

exp (
∑

k λkFk(s
′, y̌,x))∑

y: yV \s′=ŷV \s′
exp (

∑
k λkFk(s

′,y,x))

=
exp (

∑
k λkFk(s

′, y̌,x)−ms′(ŷ))∑
y: yV \s′=ŷV \s′

exp (
∑

k λkFk(s
′,y,x)−ms′(ŷ))

≥ e−δs′

|γ|
(3.26)

The last inequality follows from the de�nition of δs and ms(y). This proba-
bility only applies to the update of node s′ in the Gibbs chain and not to the
probability for the entire step pŷy̌. Therefore, denote the transition matrix
of the Gibbs chain when updating node s by Ps and write

P =

|V |∏
s

Ps. (3.27)

Using the previous inequality one obtains:

min
y,ŷ

pyŷ ≥
|V |∏
s

−eδs
|γ|
≥ −e

∆|V |

|γ||V | (3.28)

Using the bound on δ(P) from earlier one �nally derives:

δ(P) ≤ 1− |γ||V | e
−∆|V |

|γ||V | = 1− e−∆|V | (3.29)

3.3 Bounding the Expected Bias

The convergence of the Gibbs chain can be evaluated theoretically by pro-
viding an upper bound for the bias in expectation. To do this, I will use the
approach of Fischer and Igel [9]. They build upon the results of Bengio and
Delalleau [1], who present the following result.

Lemma 3.12. Consider the Gibbs chain y1 → y2 → · · · starting at a data

point y1. For any step l of the chain the log-pdf can be written as:

logP (y1) = log
P (y1)

P (yl)
+ logP (yl) (3.30)

Since this is true for every path in the chain, it can be calculated as the

following expectations

logP (y1) = EYl

[
log

P (y1)

P (yl)

∣∣y1

]
+ EYl

[logP (yl)|y1] (3.31)

Where EYl
denotes expectation w.r.t. the variable Yl.
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Proof. Equation (3.30) follows directly from the rules of logarithms. Equa-
tion (3.31) follows by the marginalization:

logP (y1) =
∑
yl

P (yl) logP (y1) (3.32)

Theorem 3.13. Consider a converging Gibbs chain y1 → y2 → · · · starting
at a data point y1. Equation (3.30) di�erentiated w.r.t. λk can be written as

δ

δλk
logP (y1) =

∑
s

(Fk(y1,x, s)− EYl
[Fk(Yl,x, s)|y1])

+
∑
s

(
EYl

[
δ

δλk
logP (yl)

∣∣y1

])
, (3.33)

where the last term is the expected bias of the CD procedure, which goes to

zero, as l→∞.

Proof. Take derivative of equation (3.30) w.r.t. λk

δ

δλk
logP (y1) =

δ

δλk
log

P (y1)

P (yl)
+

δ

δλk
logP (yl)

=
δ

δλk
log

(
exp

(∑
k

∑
s

λkFk(y1,x, s)− λkFk(yl,x, s)

))

+
δ

δλk
logP (yl)

=
∑
s

(Fk(y1,x, s)− Fk(yl,x, s)) +
δ

δλk
logP (yl) (3.34)

Take expectation of this w.r.t. Yl as in equation (3.31)

δ

δλk
logP (y1) =

∑
s

(Fk(y1,x, s)− EYl
[Fk(Yl,x, s)|y1])

+ EYl

[
δ

δλk
logP (yl)

∣∣y1

]
(3.35)

From equation (2.14) one can see that the last term is the expected bias
of the CD procedure. As in Bengio and Delalleau [1], one can express the
convergence of the Gibbs chain through the probability

P (Yl = y|y1) = P (y) + ϵl(y), (3.36)

where ϵl(y) is the error. Let ϵl
def
= maxy ϵl(y) → 0, as t → ∞. This follows

from the fact that the Gibbs chain converges to the stationary distribution
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independent of the initial distribution, in which it was started. Now derive:

EYl

[
δ

δλk
logP (Yl)

∣∣y1

]
=
∑
yl

P (yl|y1)
δ

δλk
logP (yl)

=
∑
yl

P (yl)
δ

δλk
logP (yl) +

∑
yl

ϵl(yl)
δ

δλk
logP (yl)

≤
∑
yl

|ϵl(yl)|
δ

δλk
logP (yl) ≤

∑
y

ϵl

∣∣∣∣ δδλk logP (yl)
∣∣∣∣

(3.37)

The last term goes to zero, as t→∞, which completes the proof.

So given enough Gibbs steps, the expected bias of the CD procedure will be-
come arbitrarily small. Consequently, a single Gibbs sampler in the CD pro-
cedure, i.e. R = 1, should be su�cient for approximating the log-likelihood
gradient, at least in expectation.

I will use the previous result along with the following lemma to provide
an upper bound on the expected bias of the CD procedure.

Lemma 3.14. Let M be an LN Model. The following bound on the log-

likelihood di�erentiated w.r.t. λk for a given data vector x holds:∣∣∣∣ δδλk logP (y)
∣∣∣∣ ≤∑

s

|Fk(y,x, s)− EY[Fk(Y,x, s)]| (3.38)

≤
∑
s

max
ŷ
|Fk(ŷ,x, s)| (3.39)

Proof. Use equation (2.14) to derive

∣∣∣∣ δδλk logP (y)
∣∣∣∣ =
∣∣∣∣∣∣
∑
s

Fk(y,x, s)−
|V |∑
s=1

EY[Fk(Y,x, s)]

∣∣∣∣∣∣
≤
∑
s

|Fk(y,x, s)− EY[Fk(Y,x, s)]|

≤
∑
s

max
ŷ
|Fk(ŷ,x, s)| (3.40)
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Theorem 3.15 (Bound on the CD Bias). Given an LN model G = (V,E)
trained by Contrastive Divergence, with a Gibbs sampler y1 → y2 → · · · over
Ω, starting at a point y1. Let π be the stationary distribution of the Gibbs

sampler and µ the initial distribution. The expected bias of the L-Steps 1-

Sample CD procedure, given in Theorem 3.13, can be bounded by, for given

x,∣∣∣∣EYl

[
δ

δλk
logP (yl)

∣∣y1

]∣∣∣∣ ≤ |µ− π|(1− e−|V |∆)L

(∑
s

max
ŷ
|Fk(ŷ,x, s)|

)
,

(3.41)

where

∆ = sup
s′∈V

sup
ŷ,y̌

{∣∣∣∣∣
∑

k

∑
s∈N(s′)

λk (Fk(ŷ,x, s)− Fk(y̌,x, s))

∣∣∣∣∣∣∣ŷV \s′ = y̌V \s′

}
(3.42)

Proof. Use Theorem 3.13 with the bound in Lemma 3.14 to obtain∣∣∣∣EYL

[
δ

δλk
logP (yL)

∣∣y1

]∣∣∣∣
=

∣∣∣∣∣∑
yL

P (yL|y1)

(
δ

δλk
logP (yL)

)∣∣∣∣∣
=

∣∣∣∣∣∑
yL

(P (yL|y1)− P (y))
(

δ

δλk
logP (yL)

)∣∣∣∣∣
≤ |µ− π|(1− e−|V |∆)L

∣∣∣∣ δδλk logP (yL)
∣∣∣∣

≤ |µ− π|(1− e−|V |∆)L

(∑
s

max
ŷ
|Fk(ŷ,x, s)|

)
, (3.43)

where

∆ = sup
s′∈V

sup
ŷ,y̌

{∣∣∣∣∣
(∑

k

∑
s

λkFk(ŷ,x, s)

)

−

(∑
k

∑
s

λkFk(y̌,x, s)

)∣∣∣∣∣∣∣ŷV \s′ = y̌V \s′

}

= sup
s′∈V

sup
ŷ,y̌

{∣∣∣∣∣
∑

k

|V |∑
s∈N(s′)

λk (Fk(ŷ,x, s)− Fk(y̌,x, s))

∣∣∣∣∣∣∣ŷV \s′ = y̌V \s′

}
.

(3.44)
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The theorem establishes an important relationship between the CD bias and
the three distinct quantities:

• The variational distance between the initial distribution and the sta-
tionary distribution of the Gibbs chain.

• The number of Gibbs chain steps L coalesced with the maximum
change in energy by changing a single node in a con�guration, i.e. the
largest change in energy the Gibbs chain make by updating a single
node.

• The maximum value of Fk, given the observation x.

Making either the variational distance smaller or the number of Gibbs chain
steps L larger will lower the upper bound of the CD bias, and most likely
also improve the performance of the CD procedure. The third quantity, how-
ever, requires a more sophisticated interpretation. For example, by simply
multiplying each feature function with a very small scalar 0 < c < 1 the
parameters will grow and make the second term larger. Perhaps one way to
improve the CD procedure, w.r.t. to the third quantity, is by smoothing the
feature function values across the di�erent con�gurations in Ω. Preferably
one should avoid this, since it changes the actual model, but if there should
exist unnecessary extreme values in the feature functions, one might improve
the CD procedure considerably by removing them.

A Heuristic Argument I can use Theorem 3.15 to give a heuristic argu-
ment in favor of Persistent CD for a su�ciently small learning rate η > 0 and
su�ciently large update steps L. Suppose M is an LN Model with training
data set {xn,yn}Nn=1, which has been trained until learning iteration t. Let
v and µ be the initial distributions for Gibbs samplers using Persistent CD
and Standard CD respectively. Denote by Pt and πt the transition matrix
and the stationary distribution of the Gibbs samplers at learning iteration
t. In the degenerate case where η = 0 Theorem 3.8 yields

dv(v,πt) = dv(µPt−1,πt) = dv(µPt,πt) ≤ dv(µ,πt). (3.45)

For a su�ciently small η > 0 applies πt ≈ πt−1 and thus Pt ≈ Pt−1. This
means that applying the Persistent CD at learning step t corresponds to
running the Gibbs chain for twice as many iterations than the Standard CD.
Therefore, with a high probability, one would expect the variational distance
to be smaller for the Persistent CD than for the Standard CD, according to
Theorem 3.8. However, in the general case it could happen that the last sam-
ple obtained by the Persistent CD had a very low probability. This could
change the Persistent CD model parameters in an arbitrary direction during
the parameter updating step and hence push µPt far away from both the
stationary distribution of the Persistent CD model and the Standard CD
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model. So, from a deterministic point of view the variational distance is not
smaller for the Persistent CD than the Standard CD. This unfortunate case
only happens with a low probability, since the Gibbs sampler will update
the model parameters in the correct direction, with a high probability, for
su�ciently large L. However, for the same reason it should be noted that
applying the Persistent CD procedure introduces an additional stochastic
element in the process. While the Standard CD will not be a�ected by up-
dating the parameters in the wrong direction, the Persistent CD will use the
previous samples again and therefore risks updating in the wrong direction
again if L is not su�ciently high. Therefore the proposed argument only
applies for su�ciently small η > 0 and su�ciently large L. Under these
conditions, and from Theorem 3.15, it is presumable that the Persistent CD
will have a smaller bias than the Standard CD for most learning iterations.

Lastly, I can use Theorem 3.15 to establish an exact upper bound, when the
Gibbs sampler is initialized from a uniform distribution in the CD procedure.

Corollary 3.16. Given an LN model G = (V,E) and a converging Gibbs

chain y1 → y2 → · · · on Ω starting at a point y1. Let π be the stationary

distribution of the Gibbs chain and µ the initial distribution. If µ is the

uniform distribution on Ω, the expected bias of the L-Steps 1-Sample CD

procedure can be bounded by, for given x,∣∣∣∣EYl

[
δ

δλk
logP (yl)

∣∣y1

]∣∣∣∣
≤
(
1− 1

|γ||V |

)
(1− e−|V |∆)L

 |V |∑
s=1

max
y
|Fk(y,x, s)|

 ,

where ∆ is as in Theorem 3.15.

Proof. Given that µ is the uniform distribution the largest variational dis-
tance, i.e. the largest dv as de�ned in equation (3.9), occurs with respect to
a probability distribution α where α(y) = 1 for a single y ∈ Ω. Use this
observation with Theorem 3.15

1

2

∑
y∈Ω
|µ(y)− π(y)| ≤ 1

2

∑
k∈Ω
|µ(y)−α(y)| = 1

2

(
|γ||V | − 1

|γ||V | + 1− 1

|γ||V |

)

= 1− 1

|γ||V | (3.46)
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Chapter 4

Graph Cuts

4.1 Basic Concepts

So far I have presented and analyzed the Contrastive Divergence procedure
for estimating the model parameters. Once the model parameters are found,
one would like for almost every practical purpose to use the model on unob-
served data. In other words one would like to �nd the most likely con�gu-
ration in the CRF Model given a conditioned data vector. This is the task
of inference and is equivalent to �nding the con�guration with the lowest
energy value in equation (2.6). This is where Graph Cuts come in. Not
only do Graph Cuts solve the inference problem, but they also function as
the main building block in an alternative learning framework, which I shall
present in the �nal section.

Graph Cuts is a novel approach for performing exact and fast inference
in MRFs. Graph Cuts are by far the most popular, and for many graph
structures so far the only, method for exact inference in polynomial time
[17] [5] [4]. Simple enumeration of every single con�guration to �nd the
most likely one yields the same computational complexity as calculating
the partition function, while the tractable alternatives in the literature are
approximate methods with a high variance in the quality of their solutions,
see for example Szeliski et al. [24]. Since Graph Cuts are applicable to MRFs
they are also applicable to CRFs for �xed conditioned data vector x.

I will follow the mathematically rigorous and general framework estab-
lished by Kolmogorov and Zabih [17]. A short but less technical introduction
is given by Boykov and Veksler [4]. I will start with some basic de�nitions
inspired by Boykov and Veksler.

De�nition 4.1. A single-source single-sink �ow network is a directed graph-

ical model G = (V,E) with terminal nodes s, t ∈ V . The node s is called

the source node and the node t is called the sink node. Denote an edge by
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(u, v) ∈ E and further de�ne the capacity c(u, v) : E → R and the �ow

f(u, v) : E → R such that:

0 ≤ c(u, v), (v, u) ∈ E ∀(u, v) ∈ E (4.1)

f(u, v) ≤ c(u, v) ∀(u, v) ∈ E (4.2)

f(u, v) = −f(v, u) ∀(u, v) ∈ E (4.3)∑
w∈V

f(u,w) = 0 ∀u ∈ V, u /∈ {s, t} (4.4)

If f(u, v) = c(u, v) for some edge (u, v) ∈ E it is called a saturated edge. The

capacity function is synonymously called the weight function. If not speci�ed,

the capacity of an edge c(u, v) equals zero.

The �rst and second condition limits the �ow of each edge to a certain
maximum capacity. The �rst and third conditions insures symmetry in the
�ow and together with the fourth condition constrains the network such that
only the source and sink nodes can send and absorb �ow. I will refer to a
single-source single-sink �ow network as simply a �ow network. The �ow of
the network can now be de�ned.

De�nition 4.2. The �ow of a �ow network G = (V,E) is de�ned as

|f | =
∑

(s,v)∈E

f(s, v). (4.5)

The maximum �ow is further de�ned as maxf |f |.

An integral part of Graph Cut methods is the s-t-cut.

De�nition 4.3. An s-t-cut for a �ow network G = (V,E) with terminal

nodes s, t ∈ V is a partitioning of all the nodes V into two disjoint subsets

S and T , i.e. for all v ∈ V either v ∈ S or v ∈ T . The cost of the s-t-cut is
de�ned as

C(S, T ) =
∑

(u,v)∈S×T

c(u, v). (4.6)

An edge (u, v) ∈ E where c(u, v) > 0 is called a severed edge if u ∈ S, v ∈ T .

De�nition 4.4. For a �ow network G = (V,E) with terminal nodes s, t ∈ V
an s-t-cut with partitioning S and T is called a minimum s-t-cut if
C(S, T ) ≤ C(S′, T ′) for all other partitionings S′, T ′. The cost is synony-

mously called the capacity.

It can be shown that the minimum s-t-cut corresponds to a maximum �ow
solution of the network. Once this is done the literature on �ow networks
provides a wealth of polynomial time algorithms for �nding the maximum

33



�ow. The following theorem establishes this correspondance between max-
imum �ow and the minimum s-t cut in a �ow network. It is described in
Boykov and Veksler [4, p. 3], but originally due to Ford and Fulkerson [10].
Please see the last reference for the proof.

Theorem 4.5. For a �ow network G = (V,E), a minimum s-t-cut value
C(S, T ) equals the maximum �ow maxf |f | of the network. Furthermore, any
saturated edge (u, v) ∈ E, i.e. f(u, v) = c(u, v), where f is the maximum

�ow, corresponds to a severed edge in the minimum s-t-cut, i.e. u ∈ S and

v ∈ T .

4.2 Graph Cut Minimization

I can now start employing the framework of Kolmogorov and Zabih [17].
They present the following de�nition.

De�nition 4.6. A function E : {0, 1}n → R is graph-representable if there

exists a �ow network G = (V,E) with terminal nodes s, t ∈ V and a subset of

nodes denoted V0 = {v1, . . . , vn} ⊆ V \ {s, t} such that, for any con�guration

{y1, . . . , yn} ∈ {0, 1}n, the minimum of the function E(y1, . . . , yn) is equal
to a constant plus the cost of the minimum s-t-cut subject to the partitioning

vi ∈ S if yi = 0 and vi ∈ T if yi = 1 ∀i ∈ {1, . . . , n}.

This de�nition is followed by a motivating lemma.

Corollary 4.7. Suppose the energy function E is graph-representable by a

�ow network G = (V,E) and a subset V0. Then, it is possible to �nd the

exact minimum of E in polynomial time by computing the minimum s-t-cut
in G.

Proof. The proof follows from Theorem 4.5 and the existence of polynomial
time algorithms for �nding maximum �ow.

One way of calculating the maximum network �ow in polynomial time is
through the use of the relabel-to-front algorithm described in Goldberg and
Tarjan [11]. Their algorithm has a worst-case complexity of O(|V |2|E|).
[11, See p. 8, Theorem 3.11]. So if the energy in equation 2.6 is graph-
representable one can maximize it in polynomial time.

Kolmogorov and Zabih present a class of functions which are graph-
representable. It should be noted that this class of functions does not
necessarily have to be de�ned by a graphical model. From this class of
graph-representable functions, I can establish a subclass of the LN Models
for which Graph Cut methods apply. To begin I need an important result
given by Kolmogorov and Zabih. See [17, Appendix].
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Theorem 4.8. The sum of two graph-representable functions is also

graph-representable.

Theorem 4.9. Let E : {0, 1}n → R be a function on the form

E(y1, . . . , yn) =
∑
i

Ei(yi) +
∑
i

∑
i<j

Eij(yi, yj), (4.7)

where Ei(yi) : {0, 1} → R for i ∈ {1, . . . , n} and Eij(yi, yj) : {0, 1}2 → R for

i, j ∈ {1, . . . , n} for i < j. Then, E is graph-representable if and only if each

term Eij satis�es the inequality

Eij(0, 0) + Eij(1, 1) ≤ Eij(0, 1) + Eij(1, 0). (4.8)

Proof. I will only consider the if part of the proof which constructively shows
that functions satisfying equation (4.8) are graph-representable. See [17, p.
5] for the other direction.

Let E : {0, 1}n → R be a function satisfying equation (4.7) and (4.8).
One can construct �ow networks for each variable yi and each pair yi, yj
and afterwards merge these �ow networks into a complete �ow network by
adding all nodes and edges from the smaller �ow networks and summing
their capacities for each edge. If each of the smaller �ow networks are graph-
representable then their sum, i.e. the complete set of nodes and the sum of
the capacities for each edge, will also be graph-representable according to
Theorem 4.8. The complete �ow network will have n + 2 vertices where n
comes from the number of binary variables and 2 from the terminal nodes.

Start by constructing a �ow network for each term Ei. First, add a node
vi, the source node s and the sink node t to the �ow network. If Ei(0) < Ei(1)
add an edge (s, vi) and set the capacity c(s, vi) = Ei(1)− Ei(0). If Ei(0) ≥
Ei(1) add an edge (vi, t) and set the capacity c(vi, t) = Ei(0) − Ei(1). In
both cases one can add the remaining edge (s, vi) or (vi, t) with capacity zero
to form a connected �ow network. The minimum s-t-cut is cutting the edge
with zero capacity. Hence, the value of the minimum s-t-cut will yield the
minimum value of Ei plus a constant. Ei is therefore graph-representable.

Next construct a �ow network for each term Eij where i < j. Add the
four nodes vi, vj , s, t. Then observe that Eij can be written as Table 1 and
Table 2 in Kolmogorov and Zabih [17].

(
Eij(0, 0) Eij(0, 1)
Eij(1, 0) Eij(1, 1)

)
=

(
A B
C D

)
=

A+

(
0 0

C −A C −A

)
+

(
0 D − C
0 D − C

)
+

(
0 B + C −A−D
0 0

)
(4.9)
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The �rst term assigns the same value for all combinations and can therefore
by De�nition 4.6 be ignored. The second and third terms depend only on
yi and yj respectively. For these create �ow networks as before for Ei: add
the necessary edges and capacities between vi, vj and the terminal nodes
including the edges with zero capacity. The last term depends on both yi
and yj . Therefore add edge (vi, vj) with corresponding capacity c(vi, vj) =
B+C−A−D. By equation (4.8) this is non-negative. If there are no edges
with strictly positive capacities to s then the minimum s-t-cut partitions
S = {s}, T = {vi, vj , t} and similarly if there are no strictly positive edges to
t and if there is no edge between vi and vj . In these cases the minimum s-t-
cut clearly coincides with minimizing the function Eij . If there are strictly
positive edges to both s and t the minimum s-t-cut will sever exactly one
of the three non-zero edges spawned by the matrix in equation (4.9). The
edge severed will be the edge with minimum capacity which corresponds
to minimizing the value of Eij plus a constant. Eij is therefore graph-
representable. Using this procedure one can construct �ow networks for all
Ei and Eij and then use Theorem 4.8 to sum them together. Since each �ow
network was graph-representable their sum will also be graph-representable.
This proves that E is a graph-representable function.

The restriction i < j for the functions Eij is not a restriction since one
can add the value of Eji to Eij . However, the restriction of equation (4.8)
seriously limits the choices of Eij . I can now use this result to establish a
submodel of the LN Model for which Graph Cut methods apply.

De�nition 4.10 (LP Model). Let M be an LN Model, where Ω = {0, 1}|V |

satisfying for each k ∈ {1, . . . ,K}, s ∈ V and any y, x

Fk(y,x, s) = F sk (ys) +
∑

s′∈N(s)

F s,s
′

k (ys, ys′), (4.10)

where F sk : {0, 1} × Φ× {1, . . . , |V |} → R (4.11)

F s,s
′

k : {0, 1}2 × Φ× {1, . . . , |V |}2 → R (4.12)

F s,s
′

k (1, 1) + F s,s
′

k (0, 0) ≥ F s,s
′

k (1, 0) + F s,s
′

k (0, 1) λk ≥ 0. (4.13)

The terms x, s, s′ are suppressed as variables in the Fk functions. Then, M
is a CRF Log-Linear Pairwise Model (or shorter an LP Model).

Lemma 4.11. Let M be a CRF Log-Linear Pairwise Model. For any given

x, one can perform inference on M, i.e. minimize the energy function in

equation (2.6), in polynomial time using Graph Cut methods.

Proof. Let M be a CRF Log-Linear Pairwise Model. Performing inference
in the LN Model is equal to maximizing (or minimizing the negative of) the
term in the exponential function in equation (2.6). Therefore, let F sk and
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F s,s
′

k correspond to functions −Ei and −Eij in Theorem 4.9. One can then
maximize the following expression w.r.t. y∑

k

∑
s

Fk(y,x, s) (4.14)

by minimizing the following expression w.r.t. y∑
k

∑
s

−F sk (ys,x, s)−
∑

s′∈N(s)

F s,s
′

k (ys, ys′ ,x, s, s
′). (4.15)

By De�nition 4.10 the terms in last part of equation (4.15) satisfy equation
(4.8). Equation (4.15) is therefore graph-representable and, thus, one can
maximize equation (4.14) in polynomial time.

Due to the de�nition of the LN Model, I am in fact restricting myself further
than required by Theorem 4.9. The optimized function in equation (4.14) is
a linear function of λ, which is not needed in Theorem 4.9. This of course
is the necessary compromise of keeping the nice statistical properties of the
LN Model and still having a model where Graph Cut methods apply. The
result presented so far apply to single- and pairwise terms in the exponential
function. Similar results are established for terms involving three random
variables by Kolmogorov and Zabih [17].

4.3 An Introduction to Max-Margin Learning

In the previous two sections I derived Graph Cut methods, which were ap-
plicable to a subset of the LN Models. These could be used for inference,
which serves a great practical interest, but they also form an integral part
in estimating the parameters of the LN Model using Max-Margin learning.
Max-Margin learning has some nice statistical properties, see [25] and [7],
but it also has important connections to maximum likelihood estimation
and Contrastive Divergence learning. These connections will serve as my
motivation for introducing the Max-Margin learning.

Suppose M is an LN Model with training data {xn,yn}Nn=1. Let

ŷn = argmax
y ̸=yn

∑
k

∑
s

λkFk(y,x
n, s). (4.16)
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Using equation (2.11) the log-likelihood for an LN Model can be written as

L(λ) =
∑
n

∑
k,s

λkFk(y
n,xn, s)− log(Z(xn,λ))


=
∑
n

∑
k,s

λkFk(y
n,xn, s)−

∑
k,s

λkFk(ŷ
n,xn, s)− Γ(ŷn,xn)

 ,

(4.17)

where

Γ(ŷn,xn)
def
= log

∑
y

exp

∑
k,s

λkFk(y,x
n, s)

−∑
k,s

λkFk(ŷ
n,xn, s)

= log

∑
y

exp

∑
k,s

λkFk(y,x
n, s)− λkFk(ŷn,xn, s)

 ≥ 0.

(4.18)

Suppose there is only a single sample xn. Instead of the partition function
in the log-likelihood above, the Max-Margin learning procedure maximizes
the following expression:∑

k

∑
s

λkFk(y
n,xn, s)−

∑
k

∑
s

λkFk(ŷ
n,xn, s) (4.19)

By de�nition ŷn is the con�guration with the highest probability, di�er-
ent from the correct con�guration yn, for the parameters λ. Maximizing
equation (4.19) therefore boils down to minimizing the energy of the correct
con�guration yn, while inducing as large an energy margin as possible to
the con�guration with lowest energy, di�erent from yn. This is where the
name Max-Margin comes from. Because the energy margin can be made ar-
bitrarily large by multiplying λ with a su�ciently big scalar, it is necessary
to bound it. This is done by setting the 2-norm ||λ|| = ψ, where ψ > 0 is a
constant. The di�erence between the Max-Margin expression and maximum
likelihood expression is then bounded by:∑

n

max
λ:||λ||=ψ

Γ(ŷn,xn) ≤ max
λ:||λ||=ψ

∑
n

Γ(ŷn,xn) (4.20)

I can now give a suggestion as to why Γ(ŷn,xn) decreases during Max-
Margin learning. Suppose an LN Model is initialized with parameters λ,
such that the probability mass is distributed almost uniformly on Ω, subject
to ||λ|| = ψ. This could for example be done by choosing λ, subject to
||λ|| = ψ, such that the variational distance between the model distribution
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and the uniform distribution is as small as possible. Suppose, as the training
progresses, that the model starts to assign higher probabilities to a small
subset of con�gurations {ȳn,1, . . . , ȳn,κ} and very low probabilities to all
other con�gurations. If this did not happen, i.e. the model kept a large
number of high probability samples, it is likely that the model would be
either a poorly trained or simply unusable for the classi�cation problem.
Supposing it did happen, and that ŷn had a lower energy than yn, then
by equation (4.18) gradually Γ(ŷn,xn) → log(κ). If further κ started to
decrease, meaning the probability mass became more concentrated on even
fewer samples, Γ(ŷn,xn) would decrease further. Indeed, Γ(ŷn,xn) → 0 as
κ→ 1 as long as ŷn has a higher energy than yn.

Ignoring the 2-norm constraint on λ, observe that the derivative w.r.t. λk
of equation (4.19) becomes

∂

∂λk

(∑
k

∑
s

λkFk(y
n,xn, s)−

∑
k

∑
s

λkFk(ŷ
n,xn, s)

)
=
∑
s

(Fk(y
n,xn, s)− Fk(ŷn,xn, s)) . (4.21)

This is analogous to the derivative of the log-likelihood in equation (2.14)
by replacing the last expectation with

∑
s Fk(ŷ

n,xn, s). From a maximum
likelihood perspective this is a conservative assumption. Suppose the model
only has a single feature function, then equation (4.21) will be an upper
bound on the log-likelihood derivative w.r.t. λk. Indeed, replacing the log-
likelihood derivative w.r.t. λk with the above expression is identical to the
saddle point approximation proposed by Kumar et al. [19, p. 6].

An even stronger connection can be drawn towards Contrastive Divergence
learning. Equation (4.21) is closely related to the CD approximation (3.3),
for �xed n. For convenience I will restate the CD approximation:

|V |∑
s=1

Fk(y
n,x, s)− 1

R

R∑
r=1

|V |∑
s=1

Fk(y
n
L,r,x

n, s) (4.22)

While Max-Margin learning is maximizing the energy margin between the
observed sample and the highest probable sample of the model, the CD
procedure is maximizing the energy margin between the observed sample
and a set of samples from the model. In other words both the CD procedure
and the Max-Margin procedure are maximizing energy margins, but with
respect to slightly di�erent samples. Conversely, one can view equation
(4.21) as a CD parameter update, where the Gibbs samples are equal to the
highest probable sample.
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In general, as the CD training proceeds one would expect the LN Model to
assign a high probability to a few con�gurations and a very low probability
to all others. This presumption is similar to the one given for Γ(ŷn,xn) to
decrease during training, but this time applied to the CD procedure instead
of the Max-Margin learning procedure. This means that the CD procedure
will, with a high probability, start to sample only a few highly probable
con�gurations. Due to the log-linear construction of the pdf in the LNModel,
this will yield samples where the feature function values are very close to each
other, as well as to the con�guration with the highest probability. Therefore,
Max-Margin learning and CD learning are not so di�erent.

By construction, equation (4.19) is a deterministic quantity, and, there-
fore, there are no stochastic elements in the parameter estimation process.
Contrary to CD, we do not have to worry about the exactness of the solu-
tion found by the procedure. Once it has been empirically established that
the procedure works for a certain class of problems, we can have a higher
degree of con�dence in applying it again to other problems in this class.
However, the deterministic properties are paid for in terms of the introduced
complexity in �nding the parameters λ, by having to specify a priori the
parameters norm, and by deciding the exact margin de�nition, as will be
discussed shortly.

The introduction so far has focused on a �xed sample n, but clearly one
will need to consider all samples and somehow weight them accordingly to
�nd λ. Simply summing over all these as in the CD update step does not
necessarily lead to a good classi�cation model. Some samples could have
a very small set of high probability con�gurations, e.g. samples that are
easy to classify, and others a large set of con�gurations with almost the
same energy levels, e.g. samples that are hard to classify. This problem
does not occur in maximum likelihood estimation, because the maximiza-
tion attempts to minimize the energy of all con�gurations di�erent from the
correct con�guration. For margin learning one has to explicitly di�erentiate
between samples. This is done using so called slack variables. This means,
however, that the previous arguments comparing Max-Margin learning to
maximum likelihood estimation and CD learning should also take this into
consideration.
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Following Szummer et al. [25], I de�ne the Max-Margin learning procedure.

De�nition 4.12 (Max-Margin Learning). LetM be a CRF Log-Linear Pair-

wise Model with training data set {xn,yn}Nn=1. Let the penalty parameter

C > 0 be given. Let λt be the parameters at learning iteration t. Initial-

ize λ1 from an arbitrary distribution. Let S1, . . . , SN ⊆ Ω be empty sets.

For each learning iteration t the parameters λ are updated according to the

following procedure. For every sample n, �nd:

ŷn = argmax
y ̸=yn

∑
k

∑
s

λtkFk(y,x
n, s) (4.23)

If ŷn ̸= yn add ŷn to the set Sn. Find λt+1 by solving the quadratic program:

min
λt+1

1

2
||λt+1||2 + C

N

∑
n

ξn s.t.

λt+1
k Fk(y

n,xn, s)− λt+1
k Fk(y,x

n, s) ≥ 1− ξn ∀y ∈ Sn ∀n
ξn ≥ 0 ∀n (4.24)

The procedure is stopped when λt remains unchanged after solving the

quadratic program. The variables ξn are called the slack variables.

As described earlier, the parameter norm is assumed to equal some constant.
To maximize equation (4.19) one would have to consider all the con�gura-
tions y ∈ Ω, since changing the parameters can change ŷ. This translates
into solving the quadratic program:

max
λt+1:||λt+1||=ψ

ϵ s.t.

λt+1
k Fk(y

n,xn, s)− λt+1
k Fk(y,x

n, s) ≥ ϵ ∀y ∈ Ω ∀n, (4.25)

Here ψ is a constant and ϵ denotes the smallest energy margin. Setting
Sn = Ω ∀n, the quadratic program above is transformed into (4.24) by using
the variable transformation ||λt+1|| ← 1/ϵ and by adding the slack variables
ξn. However, in practice setting Sn = Ω ∀n will become computationally
intractable, which is why the sets Sn are build up iteratively during the
learning procedure. This is where the Graph Cut methods come in. They
allow us to �nd ŷn with a su�ciently high speed to make the Max-Margin
procedure possible, see Szummer et al.[25]. The purpose of adding the slack
variables is twofold. First, they allow the energy margin to be negative, i.e.
that λt+1

k Fk(y
n,xn, s) − λt+1

k Fk(ŷ
n,xn, s) can be negative. Second, they

allow for noise in the data. See [25, p. 7] for further details. An analytical
analysis of the convergence properties is given by Finley and Joachims [7].
They show that the procedure terminates in polynomial-time, see [7, p. 4],
and that one can obtain a bound on the emperical risk, which gives a certain
guarantee on the quality of the solution.
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Chapter 5

An Experimental Framework

5.1 The Binary LN Model

The theoretical results presented in the preceding chapters established a
deeper understanding of the learning and inference in CRFs, but they have
also raised a number of important questions regarding both the theoretical
analysis itself and the application of it. Therefore, experimentation is needed.
In this chapter I will develop a representative model. The model will be of
miniature size, so that it is tractable for large-scale experiments using exact
log-likelihood. I will use the empirical results obtained on this model to
analyse the convergence properties of the CD procedure, to compare di�erent
CD procedures and analyse the signi�cance of the established theoretical
results. I will also relate the empirical results to others in the literature.

To proceed I am interested in an LN Model of the form illustrated in �gure
5.1. I will call it the Binary LN Model.

Figure 5.1: A Binary LN Model. The black circles underY represent random
variables in the MRF, while the black circles under x represent observed data.
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De�nition 5.1. Let M be an LN Model G = (V,E), where the nodes V =
{S1,1, . . . SA,B} such that Sa′,b′ ∈ N(Sa,b) if |a− a′| ≤ 1 and |b− b′| ≤ 1. Let
Yv ∈ {0, 1} ∀v ∈ V . Let the conditioned data x be a vector with |V | entries,
such that each entry corresponds to a node in V . Then, de�ne the feature

functions as:

F1(y,x, s) = ys (5.1)

F2(y,x, s) = ysxs (5.2)

F3(y,x, s) = −
1

8

∑
s′∈N(s)

|ys − ys′ | (5.3)

F4(y,x, s) = −
1

8

∑
s′∈N(s)

|ys − ys′ | exp
(
|xs − xs′ |2

)
(5.4)

Here xs represents the entry in x corresponding to the node s ∈ V . Fur-

thermore, restrict λ3 ≥ 0, λ4 ≥ 0. This model is de�ned as the Binary LN

Model.

The model draws inspiration from both Korc and Forstner [18] and Boykov
and Jolly [5, p. 5]. The following is a probabilistic justi�cation of it. A binary
image, i.e. an image consisting only of black and white pixels, of size A×B
has been corrupted by noise. The noisy image is a grey-scale image. We are
interested in recovering the original image, given the noisy one. Assume that
only black pixels, and white pixels in their proximity, have been corrupted by
noise. This would seem plausible if for example the image was transmitted
as a signal through an analog circuit, with black pixels transmitted by a high
current (or high voltage) and white pixels transmitted by a low current (or
low voltage). Here the noise generated by the circuit will contaminate the
black pixels considerably more than the white pixels. This assumption could
also seem reasonable to other image denoising problems, such as medical
images and space observations, where certain pixels (due to the underlying
structure of the problem) will contain much more noise than others. To keep
the model simple, I will suppose that the noise generated by a black pixel is
associated with a normal distribution. Assuming that the noisy image pixels
has been properly scaled, its marginal distribution will then be proportional
to

exp
(
|µ− xs|2

)
= exp

(
µ2 + x2s − 2µxs

)
= exp

(
µ2
)
exp

(
x2s
)
exp (−2µxs)

(5.5)

Setting −2µ = λ2 I introduce only the last term into the model as equation
(5.2). This is justi�ed by two reasons: 1) for ys = 1 and observed xs both
the other two terms cancel out in the pdf, 2) Korc and Forstner [18] have
applied the same feature function with considerable success. Suppose further
that some general characteristics of the original image distribution is known.
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Introduce the mean number of black pixels through equation (5.1). Suppose
further that the original image has a certain structure, where neighbouring
pixels with the same values are more likely to occur, i.e. black pixels are
more likely to occur next to other black pixels. This assumption is widely
applied in the literature, see [18], [5], [4] and [15, p. 112]. This structure
is constructed in two ways. Firstly, as a consequence of the neighbour-
hood structure of the original image distribution, through equation (5.3).
Secondly, by assuming that noise is spilled over from one pixel to its neigh-
bouring pixels, in such a way that higher levels of noise have lower levels of
probability. This is the smooth function in equation (5.4). The model comes
closest to Boykov and Jolly [5].

To prepare for the experiments in the following sections, I will establish
some central theory for the Binary LN Model. From the previous results, I
can establish the following corollary.

Corollary 5.2. Given a Binary LN Model G = (V,E) and a converging

Gibbs chain y1 → y2 → · · · on Ω starting at a point y1. Let π be the

stationary distribution of the Gibbs chain and µ the initial distribution. The

expected bias of the L-Steps 1-Sample CD procedure, given in Theorem 3.13,

can be bounded by∣∣∣∣EYl

[
δ

δλk
logP (yl)

∣∣y1

]∣∣∣∣ ≤ AB|µ− π|
(
1− e−8AB(λ1+2λ2+λ3+λ4)

)L
.

(5.6)

If µ is the uniform distribution on Ω, it can be bounded by∣∣∣∣EYl

[
δ

δλk
logP (yl)

∣∣y1

]∣∣∣∣ ≤ AB(1− 1

|γ||V |

)(
1− e−8AB(λ1+2λ2+λ3+λ4)

)L
.

(5.7)

Proof. Since any node has a maximum of 8 neighbours and −1 ≤ xs ≤ 1:

max
k,s,y,x

|Fk(s,y,x)| ≤ 1 (5.8)

max
k,s,ŷ,y̌,x

|Fk(s, ŷ,x)− Fk(s, y̌,x)| ≤ 1 k ̸= 2 (5.9)

max
s,ŷ,y̌,x

|Fk(s, ŷ,x)− Fk(s, y̌,x)| ≤ 2 k = 2 (5.10)

Using these inequalities in the de�nition of ∆ in Theorem 3.15 yields the
�rst inequality. Using Corollary 3.16 yields the second inequality.
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The Binary LN Model has been constructed such that Graph Cut methods
can be applied to it.

Lemma 5.3. The Binary LN Model is a Log-Linear Pairwise Model.

Proof. From De�nition 4.10 one only need to check that the negative of each
term in equations (5.4) and (5.3) satisfy equation (4.10). Since for any ys
and ys′ , |ys − ys| = |ys′ − ys′ | = 0 the equation is satis�ed.

One can construct a �ow network representing the energy function of the LN
Binary Model by following the proof of Theorem 4.9. For each ys, one can
represent F1 and F2 by constructing a �ow network with ys and the terminal
nodes t, s. If λ1 ≥ 0, add an edge from ys to t with capacity λ1. See �gure
5.2. If λ1 < 0, add an edge from s to ys with capacity −λ1. Similarly
for F2. Next continue to represent �ow networks for F3 and F4. For each
pair of neighbours ys and ys′ , construct a graph with nodes ys, ys′ , s and t.
Suppose the nodes have been ordered so that one only need consider each
pair of neighbours once. De�ne:

a
def
=

1

4

(
λ3 + λ4 exp

(
|xs − xs′ |2

))
. (5.11)

The factor 1/4 comes from each term |ys−ys′ | appearing twice in the energy
function. Now use equation (4.9) to write:(

0 0
a a

)
+

(
0 −a
0 −a

)
+

(
0 2a
0 0

)
(5.12)

From the above expression add edges (s, ys), (ys′ , t), (ys, ys′) with respective
capacities a, a, 2a. See �gure 5.2 for an illustration. Finally create the com-
plete �ow network by adding all the nodes, including the terminal nodes.
Add the capacities between nodes such that they equal the sum across every
subgraph.

Figure 5.2: Left) Flow network representing F1 for λ1 ≥ 0. Right) Flow
network representing the terms in F3 and F4.
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5.2 Experimental Setup

For the experiments I have developed a software program for experimenta-
tion on the LN Binary Model. The program is written in C++, using the
Qt framework, and compiles under Ubuntu. Everything used in producing
the program is freeware and easily accessible on the internet. The program
implements the Binary LNModel with exact likelihood estimation, using gra-
dient ascent, Contrastive Divergence learning and the above derived Graph
Cut procedure for inference. The Graph Cut implementation uses the open-
source max-�ow algorithm of Yuri Boykov and Vladimir Kolmogorov [3] [16].
The program has been thoroughly documented. Questions regarding its im-
plementation and performance are welcome. The reader is encouraged to run
the program and review the documentation, to get a deeper understanding
of the design and technical challenges underlying the experiments.

Figure 5.3: Screenshot of the software program. The Binary LN, trained
with the CD procedure, is used to denoise a 7x7 image patch.

Data: The experimental data was generated from a digital photo of a build-
ing in Hong Kong. The photo was grey-scaled and down-scaled. Afterwards
it was manually turned into a binary black and white image using GIMP
(www.gimp.org) according to the brightness of each pixel. The last step was
done in such a way as to ensure that all windows appeared black and all
the bricks surrounding the windows white (from the re�ection of the sun).
From this black and white image 80 non-overlapping 7x7 image patches were
sampled systematically from left-to-right and top-to-bottom. The image was
then contaminated by grey-scaled noise using the HSV Noise �lter available
in GIMP. The contamination procedure was repeated three times and 80
7x7 image patches were sampled from the contaminated image. The noise
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was generated to provide a serious doubt regarding the color of individual
pixels, i.e. whether they were black or white, but to leave a constellation
of pixels in the same color recognizeable to the naked human eye. Each
contaminated image patch would then correspond to the conditioned data,
i.e. xn, where each pixel intensity was rescaled to the interval [−1, 1], such
that xs = 0 if the pixel was completely white and xs = 1 if the pixel was
completely black. The corresponding non-contaminated image patch would
correspond to the true con�guration, i.e. yn, where each pixel intensity took
values in {0, 1}. This setup will favor pairwise interactions. Consequently,
the problem should contain su�cient structure for the Binary LN Model to
learn in accordance with the justi�cation presented earlier in this chapter.
See Figure 5.4.

Figure 5.4: Left) Original image used. Right) Noisy image.

5.3 Experiments

In this section I will present the experimental results obtained for the Binary
LN Model. Each experiment will present a hypothesis based on the theo-
retical results, the actual results of the experiment and a discussion of the
the achieved results. It should be noted that the majority of the following
experiments took several hours to perform, due to the computational com-
plexity of estimating the parameters. This has limited the model size and
the number of repeated experiments. This is taken into consideration in the
following discussions, but will only a�ect a small subset of the conclusions.
The experiments are primarily concerned with Gibbs samplers that are ini-
tialized using the training samples, since this has shown to be e�ective for
MRF, see for example [13] and [26]. I further set R = 1.
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Nano Model: Convergence of CD Perhaps the most fundamental ex-
periment is to investigate whether the CD procedure converges at all, and,
if it converges, then what it converges to. I will perform a total of three
sub-experiments to understand the convergence properties. The �rst sub-
experiment will be on the convergence of the parameters, w.r.t. the param-
eter 2-norm. The second sub-experiment will be on the uniqueness of the
converged solutions, i.e. whether di�erent CD procedures converge to the
same solutions. The third sub-experiment will be on the convergence w.r.t.
maximum likelihood.

Since convergence w.r.t. maximum likelihood can only be measured where
the exact log-likelihood is tractable, I have to limit the experiment to 3x3
images. This is done by using only the top-left 3x3 pixels of the image
patches. That is why I call it the nano model. Although the restriction
to 3x3 images limits the neighbourhood interactions, it should still preserve
some basic structure in the pixels for two reasons. Firstly, the neighbourhood
structure applies from pixel to neighbouring pixel and therefore also exists
in the 3x3 image model. Secondly, the conditioned data for a single pixel,
i.e. xs for ys, provides a reasonable amount of information for each pixel,
independent of the overall image size.

Because the log-likelihood gradient approximation produced by the Gibbs
chain will converge in expectation to the gradient of the model and because
of its empirical success for the MRF models named Restricted Boltzmann
Machines, see for example [12, Chapter 17], there is reason to believe that
the CD procedure will converge within a close proximity of the maximum
likelihood solution. It is, however, unclear how close to the maximum like-
lihood solution the CD procedure will be, and how sensitive the produced
solution is to the initial con�guration (i.e. initial parameter values, learning
rate etc.). A priori it is impossible to determine what a good Gibbs step
size L would be. I therefore choose to test CD-1, i.e. Contrastive Divergence
with L = 1, CD-5 and CD-20. For simplicity, I initialize the parameters λ
= 1. This initial setup should keep the numerical stability of the program
during training. In other words, it should prevent the partition function
from equaling in�nity and avoid arithmetic imprecision. From some prelim-
inary training, I found that learning rates in [5, 25] seemed to give fast and
reasonable results. I therefore set the learning rate η = 25 in the hope that
di�erences between the di�erent CD procedures will emerge clearly when the
learning rate is higher.

Figure A.2, in the Appendix, shows the squared 2-norm of the parameters.
Evidently, all the CD procedures converge fairly quickly. After 20 iterations
it seems that the squared parameter norms have settled. It is, however,
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unclear whether they have settled at the same solution or around di�erent
solutions. To perform the second sub-experiment, I will record histograms
of the parameter values at iteration 100. Presumably, from the squared
parameter norms, all the CD procedures should have converged at this point.

Figure 5.5: Histograms for each parameter value of the Binary LN Model,
obtained by CD learning at iteration 100 for the 3x3 image patches. The
colors red, blue and green correspond to respectively CD-1, CD-5 and CD-20
trained using learning rate η = 25. They were produced using 100 tests.

Figure 5.5 shows histograms for each parameter value. From these it seems
clear that all the CD procedures have settled, within a close proximity, to the
same parameter solution. This is also supported by the bell shaped curvature
in the histograms. Consequently, this implies that the results I obtain on
the convergence w.r.t. the maximum likelihood solution, will hold in general
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for every CD procedure. It should also be noted, that there appears to be
no di�erence between the CD procedures in the histograms.
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Figure 5.6: The two graphs show the log-likelihood of CD-1, CD-5 and CD-
20 trained with η = 25 for the 3x3 image patches. Due to the small size
of the above graphs the log-likelihood of the procedures lay on top of each
other. They were produced using 50 tests measuring the log-likelihood at
every 10th learning iteration. Left) Log-likelihood from learning iteration 0
to 100, Right) Log-likelihood from learning iteration 20 and onwards.

For the third sub-experiment, I used gradient ascent to �nd the exact max-
imum log-likelihood over all the samples. It is within a 0.01 decimal of -2.737.
I then proceeded to analyse the log-likelihood of the CD procedures. Fig-
ure 5.6 shows the log-likelihood of each of the CD procedures, with η = 25,
averaged over 50 tests. The left-side graph strongly indicates that the CD
procedure converges within a close proximity of the log-likelihood. However,
the right-side graph shows a disturbing e�ect. After the 20th learning it-
eration, the log-likelihood starts to fall and �nally settle around the 60th
iteration to a slightly worse log-likelihood than before. To investigate this
divergence e�ect I performed an additional sub-experiment. I ran 100 tests,
as in the third sub-experiment, and recorded the log-likelihood at the 20th
iteration and at the 100th iteration. The result is shown in Figure 5.7 as
density plots for each test. This con�rms that the CD procedures diverge
after the 20th iteration. It should, however, be noted that the divergence
e�ect is rather small. This is evidenced in the substantial overlap in the
density plots. Nevertheless, the divergence observation is important and will
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be discussed later on. Overall from the experiment, I can conclude that the
nano model is simple enough for even CD-1 to converge to a solution in close
proximity to the maximum likelihood solution. This is an encouraging result
for Contrastive Divergence learning.

Figure 5.7: Density plots for the log-likelihood, produced by CD learning,
at iteration 20 and 100 for the 3x3 image patches. The colors red and blue
correspond to respectively iteration 100 and 20. They were produced using
100 tests. Left) Density plot of CD-1 log-likelihood trained using learning
rate η = 25. Right) Density plot, with 512 Gaussian kernels, of CD-20
log-likelihood trained using learning rate η = 25.

Binary LN Model: Convergence of CD So far, I have experimented
on a nano version of the Binary LN Model. I will now proceed to experiment
on the full-scale Binary LN Model, i.e. the Binary LN Model with 7x7 image
patches. As before, it is here important to analyse the convergence properties
of the CD procedures. However, now the computational complexity has
increased drastically. For the nano model a single test, measuring the log-
likelihood until iteration 100 for every 10 iterations, would take about 2
minutes. Performing the same test on the full-scale Binary LN Model will
take at least 2.2·107 years, assuming that the computer has su�cient memory
and power to carry out the task. Thus, I cannot measure the exact log-
likelihood. I will therefore only perform two sub-experiments to investigate
the general convergence. The �rst sub-experiment will analyse the changes of
the parameters, i.e. the squared parameter norms, as before. The second sub-
experiment will analyse the uniqueness of the convergence, i.e. the parameter
solutions, as before. I choose to test CD-1 and CD-20 in the �rst sub-
experiment. I set the learning rate η = 25 and the same setup as in the last
experiment. I initialize λ = 1. I run 100 tests for 100 iterations and record
the squared parameter norm for each iteration.
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Figure A.2, in the Appendix, shows the squared 2-norm parameters. It
indicates that all the CD procedures converge fairly quickly. It therefore
seems reasonable to assume that all the CD procedures have converged after
100 iterations with η = 25. The second sub-experiment will be to analyse
the parameter solutions at iteration 100. This will con�rm whether or not
the CD procedure has converged to the same distributions. It should also
give some information on the solution quality, and, for the later experiments,
some material to compare CD-1, CD-5 and CD-20. I run 100 tests using the
same setup as before, but with CD-1 trained using both η = 25 and η = 10
and CD-20 trained using η = 10. Testing CD-1 with two di�erent learning
rates will give me some basic understanding of how the learning rate e�ects
the �nal parameter solution. One would expect the lowest learning rate to
have the most stable solution.

Figure 5.8: Histograms for each parameter value obtained by the CD proce-
dure at iteration 100 for the 7x7 image patches. They were produced using
100 tests. The colors red, blue and green correspond to respectively CD-1
with η = 25, CD-1 with η = 10 and CD-20 with η = 10.
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Figure 5.8 shows histogram plots for the di�erent parameters. They
strongly indicate that all CD procedures have converged within a proxim-
ity of the same parameters. The only parameter for which this conclusion is
doubtful is λ3, since the distribution for CD-1 with η = 25 seems to lean more
to the right. However, given that all other parameters converge so clearly, it
would seem unlikely that the CD procedure is drawing biased samples only
for a single feature function. Given the high uniformity of CD-1 with η = 25,
as is most evident in the bottom-right graph below, I will consider this to be
an abnormality caused by either 1) an insu�cient number of tests, or 2) an
artifact of a high learning rate. Also, as expected, CD-20 with η = 10 gives
the most stable solution, w.r.t. the parameter values, followed by CD-1 with
η = 10 and lastly CD-1 with η = 25. I therefore conclude that the CD proce-
dures converges to unique solutions for the Binary LN Models corresponding
to 7x7 image patches.

For the 3x3 image patches I know that the CD procedure converges ef-
fectively close to the maximum likelihood solution. Because the Binary LN
Model on the 7x7 image patches also converges, and with very high degree
of con�dence for CD-20 with η = 25, it is likely that the model is in fact
converging close to the maximum likelihood solution. Thus, from the given
experiments, I will reject that the CD procedures diverge signi�cantly. An-
other argument supporting this conclusion will be discussed later, in reference
to empirical results on the divergence of the CD procedure.

The CD Bias In the third chapter I established Theorem 3.15 for the
upper bound on the expected bias of the CD procedure. A conclusion of
the theorem was that a higher number of Gibbs chain steps L would likely
result in a lower bias. This is also supported by, Theorem 3.8, which implies
that higher L will lead to a Gibbs samples that are closer in expectation
to the actual model. Nevertheless, in theory the actual bias could be up to
maxk Fk large since every con�guration has a strictly positive probability,
which means that empirical results on the bias are necessary to improve our
understanding of the Gibbs sampler. Performing a test on the bias requires
knowing the exact log-likelihood gradient, which in turn yields the same
computational complexity as the exact log-likelihood. I am therefore forced
to limit the experiment to the nano model from before, i.e. the LN Binary
Model on the 3x3 image patches. To be able to compare to the previous result
I will keep η = 25 and the initialization λ = 1. Like the previous experiment
I will perform 50 tests and average the results over these. I will calculate two
distinct quantities. First, the average bias, which is de�ned as the absolute
di�erence between the true derivative and the derivative estimated from the
Gibbs sample, averaged over all feature functions. Second, the maximum
bias component, which is de�ned as the largest absolute di�erence between
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the true derivative and the derivative estimated from the Gibbs sample,
among all the parameters. From the theoretical results one should expect
both components to become smaller the larger L gets.

0 2 4 6 8 10

0.
00

0.
04

0.
08

Initial CD−1, CD−5 and CD−20 Bias

Iterations

B
ia

s 
co

m
po

ne
nt

 s
iz

e

0 20 40 60 80 100
0.

00
0.

04
0.

08

Long−run CD−1, CD−5 and CD−20 Bias

Iterations

B
ia

s 
co

m
po

ne
nt

 s
iz

e

Figure 5.9: The graphs show the evolution of the two bias components: 1)
the absolute average bias, and 2)the absolute maximum bias. They were
produced using 50 tests measuring every 10th iteration. The colors red, blue
and green correspond to CD-1, CD-5 and CD-20 trained using η = 25 for the
3x3 image patches. Left) Bias components for the �rst 10 iterations, Right)
Bias components for the �rst 100 iterations.

The results, shown in Figure 5.9, shows no clear di�erence between CD-1,
CD-5 and CD-20. They all appear to behave equally well with respect to
the bias. This is not what I would expect from the my theoretical results
established earlier. There can be two reasons for this: 1) either the model
is so simple, that it simply cannot capture the di�erences, or 2) neither the
upper bound nor the monotonicity of the Gibbs sampler is a good indicator
of the actual bias.

However, the results brings to light a new observation. The bias appears
to be increasing logarithmically during the learning procedure. Since the
data-initialization in the CD procedure is getting closer to the model as the
training proceeds, given the theorem on the upper bound of the bias, one
would instead expect the bias to become smaller. The explanation for the
growing bias can best be accounted for by the increasing parameters in the
model. As the parameters grow the sampling becomes more deterministic
and, thus, the Gibbs sampler will need more iterations to escape certain high-
probability con�gurations. This explanation is also found in the literature,
see Fischer and Igel [8].
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Comparison of Di�erent CD Procedures In the last experiments, I
established that the di�erent CD procedures were very similar, almost to the
point of non-detection, w.r.t. the bias and the general convergence in log-
likelihood. However, it could be that the di�erent CD procedures performed
di�erently w.r.t. speed of convergence. A more subtle analysis is required to
investigate this. I will use the Binary LN Model for the 3x3 image patches,
since I know that the solution of these converge in proximity to to the true
log-likelihood for all the CD procedures. I will therefore use the previously
obtained data on the squared parameter norms to see if there is any di�erence
between the CD procedures. This is done by subtracting the CD-20 squared
parameter norms with that of the CD-1 and CD-5.

Figure A.3, in the Appendix, shows that the squared parameter norm of
the CD-1 procedure is growing slightly slower in the initial iterations than
the CD-20 procedure, but that there is no di�erence between CD-5 and CD-
20. The observation is not conclusive, but does give an indication that CD-1
"bounces around" more, e.g. moves the parameters in di�erent directions
for di�erent learning iterations. The e�ect could be similar to the di�erence
in convergence between iterative �rst-order optimization methods (for ex-
ample gradient ascent) and second-order optimization methods (for example
Newton's method). When applied to quadratic functions, the second-order
optimization methods will often converge faster, while the �rst-order opti-
mization method will "bounce around".

To further compare the di�erent CD procedures I investigated the di�er-
ence between CD-1 and Persistent CD-1. In particular, it would be interest-
ing to test empirically the heuristic argument in favor of Persistent CD, given
in chapter three. I therefore performed 50 tests using Persistent CD-1 with
η = 25 for the 3x3 image patches and recorded the log-likelihoods. These
are comparable to CD-1 with η = 25 from earlier.
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Figure 5.10: The graph shows the log-likelihood of Persistent CD-1 minus the
log-likelihood of CD-1. The CD procedures were both trained with η = 25
for the 3x3 image patches. The graph was produced using 50 tests.

In Figure A.4, in the Appendix, the di�erence between CD-1 and Persis-
tent CD-1 are very small. However, in Figure 5.10 the di�erences become
more apparent. It indicates that the convergence speed of Persistent CD-1
is slightly faster than CD-1 in the initial iterations. Overall, however, the
result is inconclusive. Further testing on a larger model could lead to more
signi�cant results.

CD Divergence Fischer and Igel [8] present a substantial number of re-
sults concerning the divergence of the CD learning procedure in Restricted
Boltzmann Machines. See Hinton [13] for a description of the Restricted
Boltzmann Machines and a discussion on preventing CD divergence when
training these. When the CD procedure is applied to complex models the
log-likelihood starts to decrease steadily after a certain number of iterations.
This divergence is explained by the bias term in the CD procedure, which
appears to grow very large when the 2-norm of the parameters grow. This
is analogous to Theorem 3.15, where the upper bound on the bias term de-
pends on size of the parameters. Since the Restricted Boltzmann Machines
are closely related to the Conditional Random Fields, the results presented
by Fischer and Igel are of signi�cant importance.

56



However, the CRF Model is di�erent from the Restricted Boltzmann Ma-
chine in a number of ways. The CRF Model is uniquely determined by each
observed data sample, whereas the Restricted Boltzmann Machine is a priori
de�ned. For the absolute bias term of the CD procedure to grow large, it
has to grow in the same wrong direction for each k across the majority of
Gibbs samples. If there are training samples where the feature function Fk
is negative, and training samples where the feature function Fk is positive,
this would intuitively make the CRF Model robust towards the bias term.

Secondly, the restriction of the Restricted Boltzmann Machine to be a bi-
partite graph, i.e. a graph consisting of two sets of hidden and visible nodes
respectively, where connections only go from hidden to visible and visible
to hidden, requires the Restricted Boltzmann Machines to have an excessive
number of connections in order to model the data correctly. Fischer and Igel
[8] present some relatively small Restricted Boltzmann Machines, where each
node has 8 and 16 connections respectively, but in practice scientists typically
work with thousands of connections for each node, see for example Hinton
[13]. This could be a serious problem for the Gibbs sampler. If there was
no connections between nodes, i.e. every node is independent of every other
node, a single step of the Gibbs sampler would correspond to sampling from
the actual distribution, which implies the bias is zero. As more connections
are added to the network the Gibbs samplers performance is degraded. For
many classi�cation problems, CRF Models have the potential to avoid this
excessive number of connections, since it is possible to construct rich models
with relatively few connections. This could be done by specifying a larger
number of feature functions, instead of adding connections between some
nodes. As an example of this, Bremaud [6, p. 271] presents a pixel-edge

model, which only has 4 connections for each node. In the more recent
literature, Wallach [27] proposes a chain CRF Model where each node only
has two neighbours.

These arguments are not conclusive and, indeed, I have observed the above
divergence in my experiments on a small scale. However, it seems possible
that CRF Models are by de�nition, and for some problems by construction,
more robust to divergence than Restricted Boltzmann Machines. From an
empirical viewpoint CD appears to be an e�ective and promising learning
method for CRF Models.
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Chapter 6

Conclusion

This thesis deals with Conditional Random Fields (CRFs). I de�ned and
analysed a subset of CRFs named the Log-Linear Neighbourhood Models
(LN Models). In particular, I con�rmed that exact maximum likelihood
estimation (MLE) becomes computationally intractable even for small LN
Models, and that MLE is a convex optimization problem. Following this I
connected LN Models to the latest applications of CRFs in the literature,
and justi�ed their importance from a practical perspective. This highlighted
the importance of LN Models from both a theoretical point of view and for
practical applications.

Next, I de�ned the Contrastive Divergence (CD) learning procedure. In
relation to it, important results for the Gibbs sampler were presented. Based
on results for Restricted Boltzmann Machines, I derived an upper bound on
the expected bias of the CD procedure. I further developed some theoretical
results for the CD procedure, including a result on the Gibbs chain update
order and a heuristic argument in favor of Persistent CD. In the light of these
theoretical results, I provided a number of discussions and ideas bridging
theory with practical applications for the LN Models.

Then, Graph Cut methods for polynomial time function minimization were
presented. A central theorem de�ning a class of functions, which Graph Cut
methods could be applied to, was presented with proof. I established a
subclass of LN Models, which Graph Cut methods could be applied to. In
relation to the Graph Cut methods, I introduced the Max-Margin learning
procedure, and connected it analytically to the maximum likelihood learning.

In the �nal part of the thesis, I developed an image denoising model named
the Binary LN Model. I implemented this model as a software program with
gradient ascent MLE, CD learning and Graph Cut methods. I then used
the model to trial and investigate the developed theory on CD learning. In
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particular, I analysed the convergence properties and related the empirical
results to the established theoretical results. Lastly, the divergence of the
CD procedure was discussed in relation to empirical results obtained for
the Restricted Boltzmann Machines. Overall, my experiments on the model
showed encouraging results for the CD procedure.

Directions for Further Work The work presented in this thesis has
taken a broad approach to CRFs. It is therefore likely that further theo-
retical results are obtainable for the LN Model and general CRFs w.r.t. CD
learning. Indeed, results for CD learning in the LN Model are especially
important because they show both promising theoretical and empirical re-
sults. Therefore, the heuristic argument provided in favor of Persistent CD
should be explored further and, if possible, be put on a formal grounding.
The latest research in a variant of Persistent CD, proposed by Tieleman and
Hinton [26], and the method of Parallel Tempering, see Salakhutdinov [23],
are also likely to be successful alternatives to the CD procedures presented in
this thesis. Another important aspect, which has not been discussed in this
thesis, would be to investigate learning rates that change with each learning
iteration. These could improve the CD procedure signi�cantly.

While continuing research on CD learning, it is critical to compare it to
state-of-the-art methods, such as Max-Margin learning using Graph Cuts
and the results presented by Korc and Forstner [18]. Further work on devel-
oping the analytical and empirical connection between maximum likelihood
learning and Max-Margin learning is also needed. Work in this direction
could bene�t from the theoretical results given by Finley and Joachims [7].

The empirical results presented in this thesis begs additional experimen-
tation. It would be of great potential bene�t to theoretical and practical
developments, that further empirical studies are carried out on CD learning
in CRFs. A good starting point is the chain CRF proposed by Wallach [27],
which is also an LN Model. In this model exact log-likelihood is tractable and
therefore the CD procedure can be evaluated w.r.t. to the exact maximum
likelihood solution. The model proposed by Nowozin et al. [22] is also ex-
act log-likelihood tractable, and could also be used for experimentation. An
empirical comparison between CD learning and pseudo-likelihood learning,
proposed by Korc and Forstner [18], could also be fruitful. In general, further
analysis should be carried out to compare the di�erent CD procedures.
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Appendix A

Experimental Results

This Appendix lists a number of empirical results for the Binary LN Model,
which are discussed in chapter �ve of the thesis.

Figure A.1: Screenshot of the software program. The Binary LN, trained
with gradient ascent exact likelihood, is used to denoise a 3x3 image patch.
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Figure A.2: The squared parameter norm of the CD procedures. They were
produced using 100 tests. Left) Nano model, where the colors red, blue and
green correspond to respectively CD-1, CD-5 and CD-20 trained with η = 25.
Right) Full-scale model, where the colors red, blue and green correspond to
CD-1 trained using η = 25 and CD-1 and CD-20 trained using η = 10
respectively.
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Figure A.3: The graphs show the CD procedures trained with η = 25 for the
3x3 image patches. They were produced using 50 tests. Right) The squared
parameter norm of CD-20 minus the squared parameter norm of CD-5.
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Figure A.4: The colors green and red represent Persistent CD-1 and CD-
1, respectively, trained with η = 25 for the 3x3 image patches. The graphs
were produced using 50 tests. Left) The log-likelihood of CD-1 and Persistent
CD-1. Right) The bias components of CD-1 and Persistent CD-1.

Figure A.5: Histogram and density plots for the log-likelihood, at iteration
100, for the 3x3 image patches. The colors red, blue and green correspond
to respectively CD-1, CD-5 and CD-20 trained using learning rate η = 25.
They were produced using 100 tests. Left) Histogram plot of CD-1, CD-
5 and CD-20. Right) Density plot of CD-1 and CD-5 with 512 Gaussian
kernels.
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